UNIVERSITY OF CALGARY

A Systematic Literature Review of Software Engineering for Scientific and Engineering

Software and an Industrial Oil Pipeline Software Case Study

by

Roshanak Farhoodi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

AUGUST, 2011

© Roshanak Farhoodi 2011

Library and Archives Bibliothéque et

Canada Archives Canada
Published Heritage Direction du
Branch Patrimoine de I'édition

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-499-00287-7
Our file Notre référence
ISBN: 978-0-499-00287-7
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'lInternet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

(Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Abstract

Scientific and Engineering Software (SES) is different from commercial software,
it often targets computational analysis of a problem without a prior solution. This work is
aimed at systematically reviewing the literature for extracting particular challenges and
solutions of SES development. We also conducted a case study, by developing decision
support and optimization software for the oil industry to bring our findings of the review
into practice and provide evidence of challenges/solutions of developing SES.

Our development experience confirmed observations of the literature on these
challenges, especially those of requirement elicitation and testing. The requirements in
SES are often unknown upfront, developers are often domain experts and software
validation is complex; for the scientific/engineering core for which no certain test oracle
exists.

Following software engineering practices, such as adopting object-oriented
technology, iterative development approach, MVC architectural pattern, unit and GUI
testing, we could successfully develop and commercialize the optimization software

system.

ii

Acknowledgements

My deepest gratefulness goes to Dr. Vahid Garousi for his intense support,
encouragement and guidance throughout this work. Accomplishing this work would have
been impossible without his supervision and assistance.

I would also like to thank Dr. Michael Smith, Dr. Diwakar Krishnamurthy, and
Dr. Jonathan Paul Sillito, my thesis committee members, for suggesting revisions to this
work and providing useful help and feedbacks.

I would like to express my heartfelt sincere gratitude and appreciation to my
lovely parents Mohammad and Shahla, my wonderful siblings Alireza, Ramin and Rozita
and my dear fiancé Masoud for their unstoppable support, love and encouragement.

I would like to thank all my dear friends in Calgary, especially SoftQual research
group members; Shahnewaz, Christian and Ehsan, who closely brought me joy and
support during those tough days.

This work was financially supported through the Alberta Ingenuity New Faculty

Award no. 200600673, which is greatly acknowledged.

iii

To Tranquility and Peace

iv

Table of Contents

ADSITACE ...c.uvveireeiriieieireeesteecreesrre st sesbesssbesesaeaesrsaesaaresssnnesssesssseesntessnnesessesssnressorssensssasesnss ii
ACKNOWIEAZEMENLS.......ceiriiiieiiceiriitirc ettt rbee st s e s s r e b s enn s iii
Table Of CONENLS ..ottt ettt e aeseab e abs s e s s b e s san e ees %
List of Tablescccovvvrevrmmevicrrrieiere e, etereesissessesssessstsseesesetaseeeisassistererassnsrrsrreraranarnrne viii
LiSt Of FIGUIES ..eveiiieiiicceree sttt et tas e st e e s ssaeesebessste s s s aeeste e s s assmnesasnsesansesesnascnanees X
LiSt Of ACTONYINS ...ceviiiiiiiiaiienienteeee st e st e et et essae e et s see s aee e teatesmnesseessaeseanessnsesaeesstan Xii
CHAPTER ONE: INTRODUCTION 1
1.1 Introduction and MOtIVALIONcc..corriirriieriireeerneereesreccnreeseesrresssenesensneosaresesseessnesses 1
1.2 Contributions of the Thesis.......ccccceiriiriiiieiirrr ettt 5
1.3 Thesis OrganiZationcceeevvieeeriiieiesiuiceseonreseseeieeeaesseeeasesserssesanssssaseesssorssesssssessssssane 7
CHAPTER TWO: BACKGROUND AND RELATED WORK 8
2.1 Developing SES ...ttt e ste s ae s sre e e e snne s e s re e stnesesaanes 8
2.2 Systematic Mapping Studies and Systematic Literature Reviews.......c..cccccervucrneenen. 11
2.3 Related WOrKS.o..coneieiieceee e s 15

2.3.1 SLRS 0N SES SYSLEIMIS .eouviriiiieiiiiiinieireesseenseersesieecsneeetssasseseressssseesssnesssessosnees 15

2.3.2 Pipeline Operation SOftWare...........cccceeviirririennieniecciereiie e 17
2.4 Chapter SUMIMATYooeeveeiieeieeieerteereereessees e st s te e st e e e seseesasesassesaaesssssasesnees 18
CHAPTER THREE: SYSTEMATIC MAPPING STUDY AND SLR 20
3.1 Research Method ..ot 20
3.2 Goal and Research QUESTIONScocvuveriiiricieiinieirsneesiiesentrssensssesssseessanesssnesssnessssens 20
3.3 Study Selection SITAtEZYccccerreeeiierieeiie et se et s et see et e et aa e esae s 24

3.3.1 Source Selection and Search Keywordscccoccereeeiiiicciiiicicicceeniennen. 25

3.3.2 Study Selection Based on Inclusion and Exclusion Criteria.........ccccceevuveveueeennnen. 26
3.4 Data EXITaCtIONcocvuiieeeeireerciinitteenrcesenreeseeseeseseeesssssesssssesseesasesssssasssssesssnesssseeessees 28
3.5 Synthesis/Aggregation Method...........cccoooiiiviiiiinnececrcecr 30
30 RESUILS .ottt e st st 30

3.6.1 RQ 1- What are the demographics of studies in SES?cc.ccocviiiicnniinnnnn. 31

3.6.2 RQ 2- What are the Main Challenges and Solutions in SES?ccovinnenne. 43

3.6.3 RQ 3- What are the best practices in SES development?............cccccovviviincenannn. 75
3.7 Discussions on threats to validity of the results...........coceeeeeeevieirniieiiieeieiciene 77
3.8 Chapter SUMMATYcoccerieriiriieriertircteesese st e e e s e see s ae s s esessneeneesaeneseessnesanessaes 78

CHAPTER FOUR: OVERVIEW OF THE OIL PIPELINE OPERATION

OPTIMIZATION SOFTWARE DEVELOPMENT CASE STUDY 80
4.1 Project and Team MEmDbETSccceeveriiriemcciieceieeienetenen et asane 80
4.2 Case Study Research ProCess..........cooccevurnierescenreecennineenscineniesacsssssssecssssssssesssnsnns 81

4.2.1 Case StUAY deSIEN.....ccoccirrieiieeriiiieeecresreeresteeeresaeeesssesseeessanesosessosssssossussassacenes 81

4.2.2 Collection of the Evidence.........coooovvveveeeeeineeimreeeeeererieeeneeene, eeeere s eas s eraaes 84

4.2.3 REPOTHNEeveiiieeeiereeeeitaeereescesseeeeesaeesesssnesasssrassesssnaesseserassssaessossnsnansssinsnesssssnnns 85
4.3 Basic Domain Terminologyccccveeviirrireieeiieeenineeetieneee s sseseesssessse e cssie s sassssanes 85
4.3.1 PIPeling SYSIEIMSc..eeeuiirieneeenireie et ettt st s s ssbss st eas s bbb e ssannes 85
432 PUMP ...ttt ccteee st s s st es e sate s s b s s s ssane s e e s sabeseassbnesasssbnae s eabarasesennnne 86
4.3.3 PUMP StatION...cieeiiiiiiee ettt s et e s st certbee s e s sre st s st b s a e sas s nes 88
4.3.4 CoNtTOl VAIVES ...ccoeieeiiieieteereieeeniee et sesiac st e ceneeeesrne e sats s ssnnassnnsssra e s 89
4.3.5 Power Contract and POWer Rate..........coooieireiiiiiiiniiininiinnicniiienccnicccnnnnns 89
4.4 Overview of the Optimization Module.........cooeeireniiiiiiiccr e 90
4.5 Pembina PiPElinecccooeeiiiiiiiiiiiieciereeeceecetieeets et e aesne e s esensts e siaae e e s sanneenan 92
4.6 Chapter SUIMMAIYccociriemreieenierrresiessenreecoieresaesstsssesssseesssseesessnsrosssssssssssosasasessarses 94

CHAPTER FIVE: REQUIREMENT SPECIFICATION, ANALYSIS AND

DESIGN 96
5.1 SYStem FEQUITEINENLS ..c.couviirreeeieeeeeteeteeeerteeeeretesessteree s naesressaessatsessssosnessessneesness 96
5.1.1 Functional REQUITEMENLScovoviiimiinrieeiirrceeieeeeereerrreeeseececneesmaessnessssrnnes 96
5.1.2 Non-functional REQUITEMENTS.......cccovvuiieeiieeiiiieereeeneeeeererieeesitieseesessenssseseesnenssees 97
5.2 Object-Oriented Analysis and Designccccoieeieiiiiiiiniincne e 97
5.3 Actors, External Systems and Storage..........cocoeeeeiiiiiineiinnicnenncinieinnirires e 98
5.3 T OPCIALOLoveeeieeeeeieeiiirierereeeeesteesestteeessreesssseeseaessaaessestessrsssensesssenserssssrasessraes 98
5.3.2 Optimization ENGINEc.cvoviviveiiieieieiintcrten st s 98
5.3.3 G00ZIE Earth......ccociiimiiiiiiiecieeeeeeesetrcesrre ettt re st es s e s e csaabae s s sraneaessenes 100
5. 3.4 TEXE IS ..oeecieievire ettt et s st err e et e e r s s srnn s aes s aeeanen 102
S53.5 XML FAl .ttt st s saa s eas 103
5.3.6 MS EXCEL.cooieiiiiiieiieeeciieee ettt et ettt er ettt s ne e saae 103
5.3.7 Optimization formulation filec.cocereriiriiioieriiiniteeere e e 105
5.4 Use-Case DIagIamoociiiiiiiiiieeeneeeteree e seere e esseane s sesesbe s s bses s e s saenne s 106
5.4.1 Use case SPECIfiCAtIONS........ccervvererrieiereniieraiisseteteiieeeeesesrsressseesssessssssesssseessne 107
5.5 Activity Diagrams...........cccuennn.. rree i eeeet e et et eae st be et et e s e b s s a b e nn s sanenesnnnenn 111
5.5.1 RUN OPtMIZALION...cc...uiierieiiirrieieeeerietereesteeerseeseessreseeeeseasesssresssomsesnessessssnesssnes 111
5.5.2 VIEW CRAIS ...ocueieieiienieeeirrec s entenaee s rsseeee e ee e esaesseesre s ssnasssssssseesabeansssnns 113
5.5.3 L0ad PIPEIINEoooeiiiriiiiiicceeeeiecres et te et e st ere s ses e crn e s e sae s nre e eren 113
5.6 ATChItecture: MVCttt et ee s e sare s ar e e s smte s sensmnne e s snnsanes 114
5.7 Class DIaBraml.......cccccvveieiiiiiiiiiiieerereeentrsnirecseseseesenessesnssesssessasassssans reeerereeserinaaenes 116
5.8 DHSCUSSION .ccueinnriireeiicieeitcrteeererte e st eseee s e seeesseesasesssessstssasesasnneessesssessssssssstessassnssars 118
5.9 Chapter SUIMMATYccootieieiiieiiieiiienee e eettesaree e seerie s s see e ssuesessontesstseesnnsesasnen 120
CHAPTER SIX: DEVELOPMENT 121
6.1 Development Process: Iterative Approach...........oveevecvverivniinecnecinninsiinceceer e 121
6.2 Dependency ANalysis........cccceeeveirverriiintincciienieiniinsissse st sns e 123
6.2.1 APPLiCations MELICS......ueevvieuuiieeeeiirreieceererreneeeesaeessaeestsssesnseseseesseessanessseesanens 124
6.2.2 Dependency Graphs.........cvvvreeiirinieiiereiieiineecseinessssesiesssnsseesssaessseesesneecosnses 127
6.3 DISCUSSION ..coveurirrieiireeieeeteeeeitaetssosese s beesnsseses bt sste s s st st sasssbesstssssaesssssssssmaness 133
6.4 Chapter SUIMMATYcccccoviiiiiniiiiieieiercrensneecetsesrsestsesesnreseesssaessssnsnsssssessssssasssessen 134

CHAPTER SEVEN: TESTING 135

7.1 Unit Testing and NUnit FTameworkc.ooocceriicrrreeeineernerenreneeeneesneecnneenneeensnee 137
7.1.1 COde COVETAZE. ...ccvireriieiiieiiiecite ettt eee et cesnesssneesesas s nnssernneesrnanssans 142
7.1.2 SUT and Test Suite Dependencies............ccceeeeererrnreererrneressnereesesnesseronsnneeressans 143

T2 GUITESHINEG ...t ereecettreeee st st e e nneessan e ssressseesessesesaaesssnessnrasssstnnsssnssesarnes 145
7.2.1 Event-Flow Graph........c.ccoociiriiiiiiiiiiiiiiriniteececerrccreecsecssrie st 146
7.2.2 GUI Events and WIdELScooierieiireceeeencerreenreesessreesssanraessossecesesssnnssssnnes 146
7.2.3 EVENE SEQUEIICES ...c..coevrrreieierierernieniaterreeesonteesinessseessssesossasssssesssssesssressssssesasssss 148
7.2.4 GUITeSting TOOL........ceiiiiieireerieie et ere et creeesieecee e st s e sasesbe s s san e sbbe s 148
7.2.5 GUI test Cases (TeSt SCIIPLS)...ceveriirrveiirieeeriuiecnieniieseesrersteensneressersesseessenessannsss 149

7.3 Mutation Testing on Optimization Formulation Scriptcccocvvveiniiiceinicnnenne. 151

7.4 DISCUSSIONeutiiiieiiieieinteectiieicee st eeset e et resatesssateesatesabetesssesssaeeassaessraesssaesesssnssnones 154

7.5 Chapter SUIMIMATYcccoiiieeuiiriieerteenererseerereeressstesstessseesesasessssesssssesessessensneessessssses 155

CHAPTER EIGHT: OPERATION AND USAGE 157

8.1 USAZE SCENMATIOSc..ceeeriieeereriireresrerecteeereesistessesreesateessesesssasssasasansessnseesssaneeesnnesssses 158
8.1.1 Scenario 1: The impact of the delivery volume changes on the total power

cost, using the optimization Charts............cccevvceeriirnieiniice et e 159
8.1.2 Scenario 2: The impact of replacing an existing pump with a new pump on

the tOtal POWET COSL...cviiiiiirriieeieee ettt ettt st et ee et ses et sr e aes 161
8.1.3 Scenario 3: The impact of changes in power rates and thresholds on the total

POWET COSEeernieireieirririteiireeesrereseseeesessreseosssnrssssussesessses sessssasessssssnesessssssassnne 164

8.2 SPEEA Charts c..coceveeeee ettt s e eaesrr e e aas e st a e sess e e e e e nnes 166

8.3 Loading @ New Pipeline.....cccccovviviiiiiieriieniiccicennnree s e tres e e see st esneessenees 167

8.4 Commercialization 0f the SYSIEM......ccvviiieiiiiiccirir et eccree e 169

8.5 Chapter SUMMATYccoveeioieieriieececriieresiieaessaseesesesiseessassaseasssssasnssssessssssssssensinnsanesas 170

CHAPTER NINE: SUMMARY, CONCLUSIONS AND FUTURE WORKS......... 171

0.1 SUMMMATY ..ottt et et s sere s e ssentr e e s s se e e e stbeesesassaesnstesesnansessssssessessssunsesesons 171

0.2 CONCIUSIONS.....coiiiiriiiieccecieitee ettt sttt st sree e sb e b s s s se s e st nesnens 174

9.3 FULUIE WOTKS ..ottt sttt ettt s sas s saaessns s s 179

APPENDIX A: PRIMARY STUDIES AND THEIR TYPE OF EVIDENCE 192

APPENDIX B: DEPENDENCY ANALYSIS 197

APPENDIX C: TEST CASES 204

vii

List of Tables

Table 1: Comparing the characteristics of conventional software vs. SES 10
Table 2: Popular oil software SOIUtIONScccveeeiiniiiriciiniiieeeete e 18
Table 3: Distribution of papers after applying inclusion and exclusion criteria............... 27
Table 4: Data extracted for each research QUESHIONo.eeerciiriiiriiei e 29
Table 5: Breakdown of primary studies based on the research methods...............c.cceeeeee. 29
Table 6: Publications Application Domain..........; .. 33
Table 7: Application sizes in LOC..........cooiiiiiiiiiiieci ettt 33
Table 8: Recent research topics in SES development............ooovniiniieniininnneinicennnne. 40
Table 9: Classification of the primary studies based on their main goalsc........ 42
Table 10: Summary of the papers discussing requirement iSSUes...........cccccoeverevuerivenrene 46
Table 11: Summary of the papers discussing design iSSUEScccoovevvvivreinerncrrennnnnns 53
Table12: Summary of the papers discussing implementation iSSues..........ccceceeviruiennene. 60
Table 13: Summary of the papers discussing testing iSSUEScooeevvirverirceninrreniennernnnes 65
Table 14: Summary of the papers discussing MAINLENANCE ISSUES.....vveereerreeecrrerrrerersee 70
Table 15: Summary of the papers discussing cooperation and human-related issues...... 73
Table 16: Best practices in SES developmentccocovivniiiiiiiinniiiiiniiicniniciecennee, 77
Table 17: Team member roles and their €Xpertise.......coocouvevivveciiininninnee s 81
Table 18: Pump stations in Pembina pipeline covered in this project..........cccccecvvvnnnene. 94
Table 19: System list of actors and short definitions...........cceccuevimiiiniiiiniiniiiinnniccnnenne. 98
Table 20: System classes categorization based on MVC architecture............................ 115
Table 21: mainController class methods...........ccccoviiiviiveciiiiiiniinieiee e 129
Table 22: Description of the external assemblies and namespaces used in our
APPIICALIONcovticireteriteeeree it et r e e seee s st et essn e sesesessaassssbesesanessbnssssnsssene 132
Table 23: Overview of the system classes and the number of the generated unit test
cases using category partitioning approachc.ccocccvvvvvrvinniiiiinicinnecinenen 140
Table 24: Number of test cases generated for methods of mainController class............ 140
Table 25: System GUI events, their corresponding widget and user actions 147

Table 26: Summary of the events generated by the user interacting with the system.... 148
Table 27: Different paths used to record GUI SCIiPtSc.coveevemrereecvevrvrcercicecrinesnennnes 150
Table 28: Mutation testing SUMMATYccoceericirinreiniiinneiniuienisnsieessseeesnessisaresseeeses 153

viii

Table 29: Summarizing the solutions adopted for developing the engineering core and
solutions adopted for the software interfaceccccceveveverrrenceennieeccnieenciencenene 178

Table 30: Primary studies main focus and their type of evidence...........ccccceevvureennncne. 196

ix

List of Figures

Figure 1: A general process model for scientific software development (inspired by

ideas from [32])....cciciiiiiiiiiiei bbb 9
Figure 2: Steps of conducting SLRcccccimiiiiiiniciiicin ittt ssen s 12
Figure 3: Steps of conducting mapping Study.........ccceccuervicrvnerininnininnirienicne s 15
Figure 4: Number of the publications between 1980 and 2010...........coovriiiiiinnnnniinns 32
Figure 5: Programming language distribution.........c..ccoeveeiiinieiniiniiinnccineiniiennneeenen, 35
Figure 6: Cumulative number of papers reporting on usage of Fortran, C++ or Java as

their primary choice of programming languagesccccoceeeiviiniienecnnnvinnineenn. 36
Figure 7: The most active aUtROTS...........cooviiiireireccicee st ee e e sereear e s e esees 37
Figure 8: Active countries in publishing research papers on SES..........cccooooiniiinininnn. 38
Figure 9: Timeline per publication foCus area........c...cecveeeiererereiiieeinnienreneccreeeneen 39
Figure 10: Classification of research group affiliations.........ccccceccevvvnriiinnnncnenne, 41
Figure 11: Cumulative trend of publications in different research sectors.............c...cc.cc. 41
Figure 12: Snapshot taken from Alaska pipeline (taken from [140])ccoceireniinnnennnen. 86
Figure 13: Sample pump curve, head vs. flow rate and efficiency vs. flow rate (taken

FTOM [142]) . ettt et s b s s e esesaa s saab et be s e sbs s s nrnenns 88
Figure 14: A pump station with four pumps (photo by Sergei Grits [143])........cccccccc... 89
Figure 15: Oil pipeline control valves (adapted from [144]).......ccccoeovirniviinniininiicnnn. 89
Figure 16: Two sample types of electricity COSt Tates.......ccoerevvireerirccirinimenicne e 90
Figure 17: Geographical spread of Pembina pipeline [136].........cccocvvcvrnniiniiniiincnnn. 93
Figure 18: Schematic view of Pembina pipelinecccoveveevirveeincniceninninnecnccnnnecnnnne, 93
Figure 19: LINGO environment SHOWINE ... ccoecoeriveeiienieieciecrereses e ssse v 99
Figure 20: Snapshot of Google Earth application..........c.cccecveervnenniinnerincniiinninnnenn. 100
Figure 21: Sample KML file showing header information followed by 101
Figure 22: S3 station internal information..........c..ccocceveicinvcnncenieicne e 102
Figure 23: Sample XML file used for loading a new pipelinecccoeevevcieencnecnnee 104
Figure 24: Sample part of the optimization formulation file [138]cccccovveircnnnennnene 105
Figure 25: System use-case diagram...........cccoccevuviiniineinscnnuineceicinieecnensc s 106
Figure 26: Activity diagram for “Run Optimization” USE-CASE........ceruvvvrmmrverurerversennens 112
Figure 27: Activity diagram for “View chart” use-caseccccceevvvmerrirvnivirincnnnennn, 113
Figure 28: Activity diagram for “Load pipeline” use-case e eseees e eseee s ees e s 114

Figure 29: Application class diagramcccceeveeeiicnecrirencrrcree et 117

Figure 30: A model of Iterative development approach [151]cccooiiiviniinnnnnnnn 122
Figure 31: Snapshot taken from NDepened analysis reportccooeievivrieininenennennes 125
Figure 32: Application classes’ main metrics breakdowncccoveeeiimivciriniinennnninne 126
Figure 33: Dependency graph, system namespace levelc.cooeniiinvinieninninninnene, 127
Figure 34: Dependency graph, within mainController...........ccoccovivvviniinncniiiniinninnnnne 130
Figure 35: Dependency graph between .Net assembliesccccccvveeiinniivivininininne. 131
Figure 36: Test cases generated for getkmlPath methodccocoovviiiinniinniininnnnnne. 139
Figure 37: Snapshot taken in Visual Studio after running test methods of
MAINCONIOLIET ClASSoiviiiiiiie e sre s e 141
Figure 38: Symbol and branch coverage values taken from NCovercccccecvruvrnnne. 143
Figure 39: Snapshot of the covered and uncovered code in NCover for releaseObject
method in the mainController classccocvviiiiiniinciinincn e, 144
Figure 40: Test Coverage Graph for the test methods of mainController 145
Figure 41: Interaction overview diagram of the systemccoccocceerceciiiniinninninnncnnnn 147
Figure 42: Snapshot of test script taken from Ranorex Studio environment.................. 149
Figure 43: Snapshot taken after playing back the test script shown in Figure 42 151
Figure 44: Sample part of the optimization formulation file [138]cccoceereeeene. 152
Figure 45: Total cost, default Casecevvrviiiireieiiireir et 160
Figure 46: Total cost after decreasing volume..........ccoccevvveemerinnneicencicnrne e, 160
Figure 47: Total cost after increasing vOIUMEcccceoireeiciniiinniineie e, 161

Figure 48: The impact of changing first pump in S4 station on power cost (top)
before, (bottom) after replacing the pump with a pump similar to S2 pump
17 1010 1 DO OSSOSO TSSO 162

Figure 49: The impact of changing first pump in S4 station on other stations power
cost and total power cost (top) before, (bottom) after replacing the pump with a

pump similar to S2 pump StAtIONccuveeveerivieiercenreiencre et 163
Figure 50: S1 station power cost (top) with default power rates, (bottom) after

doubling power rates.........cccccveeveerneeensieersvenenns feterreeessestertersreeesaeesereeesenessraneaaes 164
Figure 51: Impact of total power cost (top) before, (bottom) after doubling 165
Figure 52: Sample speed chart...........cooviireiriiiiienieiniececccietieete e neee i 166
Figure 53: Pembina pipeline (top), hypothetical pipeline (bottom).............ccccoerrerereenens 168

X1

CLR

EBSE

GUI

IL

KML

LOC

MVC

SCADA

SDLC

SE

SES

SLR

SS

SUT

List of Acronyms
Common Language Runtime

Evidence-Based Software Engineering
Graphical User Interface

Intermediate Language

Keyhole Markup Language

Lines Of Code
Model-View-Controller

Supervisory Control And Data Acquisition
Software Development Life Cycle
Software Engineering

Scientific and Engineering Software
Systematic Literature Review
Scientific Software

System Under Test

xii

Chapter One: Introduction
In this chapter, we introduce the problem and the research gaps we intend to
address throughout this thesis. We discuss the motivation and goals, followed by
presenting the contributions of the thesis. The thesis organization is provided at the end
of this chapter.

1.1 Introduction and Moetivation

Software systems are one of, if not, the most critical parts of any modern system
(e.g., scientific, engineering, health-care, and military). It is hard to think of large-scale
industrial control and monitoring systems, manufacturing plants, rocket and airplane
navigation systems and many more medical, chemical, electrical and mechanical systems
without a software backbone.

In this thesis we focus on Scientific and Engineering Software (SES) in particular.
We investigate different publications on the methods that the scientists, engineers, or
professional developers use as well as the issues, challenges, experiences and insights
they reported during the life cycle of SES.

SES systems may exhibit quality and functionality shortfalls and failures besides
timescale and effort overruns [1, 2] as they are not usually developed by professional
software engineers [3-5]. Scientist and (non-software) engineers usually face challenges
while interacting with software engineers in building SES systems [6], which results in a
gap between these two communities, the so called “software chasm” by Kelly [3]. Also,
as stated by Cremer et al. [7]: “while advances in hardware for scientific computation
continue to be made, the process of creating scientific software that takes full advantage

of the hardware remains a time-consuming, error prone and expensive art”. In this study,

2
we aim at gathering, reviewing and aggregating practical and theoretical evidence as
presented by different authors to identify the root causes of the current gap and
problematic issues and also to extract how they can be possibly addressed.

A software (a computer program) is considered scientific software if the subject it
addresses is scientific, e.g., mathematical programs such as discrete Fourier
transformation calculator. Similarly, a software or program is considered engineering
software if the subject it addresses is related to engineering, e.g., power plant control
software. Of course, the boundary between these two categories can be often very slim or
inseparable. Segal believes “the major difference between scientific software and other
commercial software lies in the complexity of the domain” [8].

Scientists and engineers have been developing software for their own specific use
for over six decades now. Starting from early 1950, developers at the US Department of
Defence (DoD) developed scientific software for the analysis of defence systems [9] to
the recent huge software systems built to better study and analyze climate change [10].
Numerous companies focus on tﬁis very critical business of developing SES covering all
different engineering disciplines, e.g., Fekete Inc. which develops oil reservoir analysis
software tools [11], Energy Solutions International developing oil and gas software [12],
Engineering Software Center developing various engineering applications {[13], and
Intuitive Software developing structural engineering software [14]. In both research and
industrial communities, software engineering methodologies and techniques are being
adal;ted more and more into the development of major systems in areas such as aero

space, medical and embedded systems [15-17].

3

Scientific workshops such as the Workshop on Software Research and Climate
Change [18], Software Engineering for Automotive Systems [19], Workshop on Software
Engineering in Health Care [15], Workshop on Aerospace Software Engineering [16],
and Workshop on Software Engineering for Computational Science and Engineering [17]
are being held frequently in this field. The recent findings, techniques and also challenges
in developing SES are being discussed there and also to incorporate the latest finding of
the software engineering community in those application domains.

There are frequent stories about failure of software systems, e.g., Toyota’s break
system failure [2], Mars Climate Orbiter crash in 1999 [1], death resulted from
inadequate testing of the London Ambulance Service software [1] and China Airlines
Airbus Industries A300 crash in 1994 [1]. Increasing challenges of building defect-free
software is one of the main reasons of bringing software engineering best practices into
developing SES [3]. Yet there still exists a gap between how scientists/engineers and
software engineers look at the issues of developing SES [20].

In the first part of the current work, we present the results of a systematic
mapping study followed by a systematic literature review (SLR) [21, 22] conducted in the
area of SES. We have undertaken this systematic literature review to identify the
strengths and weaknesses of the state of the art and'practice in developing SES besides
highlighting the challenges of past, current and future treﬁds from the perspective of
developers, researchers and scientists. This is achieved by extracting and aggregating
evidence from key publications in this field and summarizing their insights and findings

towards improving the quality and efficiency of scientific software engineering tasks. We

4
also identified the best practices reported which are applicable to different software
development phases in various problem domains.

By conducting the SLR we were able to characterize SES as a type of software
having four main differences from commercial software. First, in SES development the
requirements cannot be decided in advance, because in most cases the objective of
developing the software is to find the solution to a problem for which no prior solution
exists [23, 24]. Second, as the main objective of developing SES is to provide a correct
and reliable code which can be utilized to improve the target science or engineering
discipline, the factor of building a working system in the shortest amount of time often
outweighs adopting rigorous software engineering practices to ensure the quality of end
product [23, 24]. Third, the developers of SES are mostly domain experts (i.e. scientists
and engineers) rather than professional software developers [23, 24]. Finally, testing SES
has two independent stages; testing the scientific/engineering core for which usually no
certain test oracle exists, and testing the software that provides access to that
scientific/engineering core. These four distinctive characteristics introduce unique
challenges to the development of SES, which require particular considerations to be
addressed.

In the second part of the thesis, we brought the insights taken from systematic
literature review into practice by conducting an industrial case study. This case study was
a part of a bigger project to develop industrial engineering software for the optimization
of oil pipeline operation. In the case study, we planned to practically experience the
challenges of SES development, to utilise the solutions reported, to verify the

applicability of the best practices and to investigate their adaptability, where relevant. As

5
a result, we presented and discussed the experience of developing the engineering
decision support and optimization software and when relevant, relate and compare our
experience with that of the literature as well as reporting the specific challenges faced. In
this case study, phases of software development are demonstrated and discussed, mainly
with the aim of providing evidence on the challenges of developing engineering software,
verifying the applicability of the best practices found in the literature, investigating their
adaptability and validating the solutions reported.

1.2 Contributions of the Thesis

To the best of our knowledge, there is no other work on the aggregation of the
literature on the state of the art and practice of software engineering for SES. The
importance of systematic mapping studies and systematic literature reviews (will be
discussed in Chapter 2) as well as the importance of software engineering for SES
besides the lack of a comprehensive review in the field inspired us to aggregate well-
known resources into one work. To achieve this goal, which is half of the contributions of
this thesis, we identified a group of important research questions and followed the precise
guideline of performing systematic reviews. We aggregated the challenges, solutions and
observations reported in the literature for the different phases of software development
and extracted the best practices provided for improving SES development. The findings
are provided, along with their particular context and domain, to give the reader a precise
understanding about their applicability and generalizability in various situations. In this
way, these findings can serve as a reference for other researchers and practitioners who
are interested in SES design and development. By reviewing the challenges identified, we

were able to characterize SES as a certain type of software,which deals with the problems

6

in scientific and engineering context that were frequently mentioned as being in a
complex domain for the typical professional software engineer to learn and master.
Similar to other Enterprise software, it is expected that the designing and implementing
SES can be improved by using standard software engineering practices, such as adopting
OO methodology and design and architectural patterns. However, testing SES is yet an
open issue, mainly as the result of not having easy access to test oracles associated with
validating the scientific core.

For the practical part of the thesis, studying the development of oil pipeline
optimization and decision support software, we adopted the best practices we identified
in the literature whenever applicable to different development phases of our system. We
studied and summarized the real world challenges of developing engineering software.
None of the studies presented in the SLR section of this work were preceded by a
comprehensive literature review, to benefit the experiences and evidence presented by
other researchers in this context.

The software requirements for this system were analysed and designed, the
software features and functionality were implemented and tested in an iterative and
flexible manner to make the practice flexible and maintainable enough with regard to the
characteristics of SES. This case study was also conducted in order to provide evidence
on SES development, in addition to what we found in the literature. We experienced the
complexity of the requirement elicitation and decided to adopt an iterative development
approach to address the emerging requirements received from the domain expert. We had
the opportunity to verify our understanding of the domain and the problem as we moved

toward the completion of the development.

7

The developed application for oil pipeline operation optimization is being
commercialized currently. The demo of the application has been presented to a group of
potential customers and they have shown initial interest for the customization and
utilization of the system in their company.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. The background information
and related work is provided in Chapter 2. In Chapter 3, the research method used to
perform the review is presented, the research questions that the review tried to answer
detailed and the results extracted from the pool of the primary studies are provided. In
Chapter 4, the overview of the case study for developing pipeline operation optimization
software is presented as the real world practice of developing SES. The details related to
analysis and design, development and testing of the software application are given in
Chapter 5, 6 and 7 respectively. Chapter 8 discusses the operation aﬂd usage scenarios of
the system. Finally, Chapter 9 concludes the whole thesis and presents the future work

directions.

Chapter Two: Background and Related Work
In this section, we provide brief backgrounds on software engineering for SES
(Section 2.1) and on systematic literature reviews (Section 2.2). We then summarize the
related works in Section 2.3.

2.1 Developing SES

Tang quoted the definition of SES from Smith [25] in her thesis as “the use of
computer tools to analyze or simulate continuous mathematical models of real-world
systems of engineering or scientific importance so that we can better understand and
predict the system’s behaviour” [26]. SES’s have a large variety: They are either
expensive commercial software packages which address a vast diversity of problems and
domains (e.g., Matlab, and Maple) and may have a large dedicated software engineering
team behind them. There are also non-commercial SES tools which are free and/or open-
source such as the R project for statistical computing [27], or Gretl (GNU Regression,
Econometrics and Time-series Library) [28].

More often, scientists attempt to develop scientific software to provide themselves
or their colleagues a tool to better analyze and understand what’s happening in a certain
scientific phenomenon (e.g., [29-32)).

In some cases, the entire purpose of developing the software is to solve a problem
that does not currently have a solution [23]. In such cases, the validation of the end
product is more complex than the case where the goal is to better understand a

phenomenon, because predicting the expected results to use as a test oracle is very hard at

9

times (if not impossible). The role of the expert’s observations and theoretical basics in
those cases becomes significant.

A general process model of scientific software development is shown in Figure 1.
A vague idea as to the solution to a scientific or engineering problem or the simulation of
a real physical system usually triggers the specification of some primary requirement

which is the starting point of developing the primary version of the software.

T T e 1) | Y ,| Endof |
; Vague . . Primary .| Primary developed Satisfactory | development |
idea [requirements | ! software) 1 performance/behaviour r—-] IR
b i I — T
JU J’ |
,,,,,1‘ S Y L,ﬁ..}
Emerging | | . . i
requirements f‘, Revised/modified software |

Figure 1: A general process model for scientific software development (inspired by
ideas from [33])

Once a prototype version of the software is developed and is executed, based on
certain criteria (as defined in the system’s functional and non-functional requirement
specifications), the output(s), performance and behaviour of the software are evaluated. If
it is found unsatisfactory, the software is reworked and modified according to the further
elicitation of requirements which will normally result in a more precise design and
implementation of the software.

This revision cycle will be repeated until a satisfactory and rational behaviour is
obtained which will represent the end of the development process. This resembles the
well-known iterative software development process except that, in the process of

developing SES, most of the time the requirements are emerging as the system is being

10

developed with the developer may not have a sound understanding about them at the
beginning.

Typically scientists who develop software do not have much knowledge and/or
interest in the software engineering aspects of their product [34]. Instead, as stated by
Chilana [35], they are willing to investigate the use of computational tools to help or
improve the understanding of a scientific concept. On the other hand, the result of the
survey by Maxville [36] confirms that researchers and scientists are “open to effective
techniques that can improve communication, transparency and quality”.

Table 1 summarizes some important differences between SES and typical
conventional software. In the next sections, our SLR results provide more details on each

of these characteristics.

Developer Domain Requirement Testing Software | Maintenance

Background | Dependency Specification Users
Conventional Software Mostly (Usually) Systematic | (Usually) | Systematic
Software engineering | Independent Comprehensively Public

defined

SES Scientific Very Loosely defined Ad hoc Scientists | Ad hoc

and dependent and

engineering engineers

disciplines

Table 1: Comparing the characteristics of conventional software vs. SES

To clarify the usage of the terms “engineer” and “engineering” in the rest of this

thesis, when they are used alone, we denote the conventional engineers (e.g., mechanical,
electrical, chemical, etc.) and the genéral area of engineering. However, when software

engineer or software engineering is used, the software focus areas are meant.

11
2.2 Systematic Mapping Studies and Systematic Literature Reviews

Reviews of research literature are carried on for a variety of goals. Usually the
reviews are conducted to provide the theoretical background for subsequent research
activities or to learn the breadth and depth of the research in a certain topic or context.
The reviews also aim at answering practical research questions by summarizing and
presenting what existing research has to offer [37]. As a result, we often find the research
reviews in the introduction section of the publications.

However, there exists another type of literature review that is considered an
original and important type of research by itself [38]. Rather than providing a base for the
researcher to be able to conduct further research and investigations, it builds a solid
starting point for other researchers and practitioners interested in a particular subject.
Four fundamental characteristics are identified for defining these types of reviews, which
make them different from other conventional reviews [38]. They are (1) systematic,
which means they have to follow a methodological approach, (2) explicit, which means
the procedure by which the review was conducted should be explained clearly, (3)
comprehensive, which means the review is expected to include all existing relevant
material, and as a result (4) reproducible by others.

The definition of SLR is summarized by Fink in his book [38] as “a systematic,
explicit, comprehensive, and reproducible method for identifying, evaluating, and
synthesizing the existing body of completed and recorded work produced by researchers,
scholars, and practitioners”.

Kitchenham et al. in [39] have discussed the importance and educational and

scientific values of evidence-based software engineering (EBSE). SLRs in their paper are

12
considered one of the primary tools of EBSE and systematic mapping is mentioned to be
a certain type of SLR which is used as a good starting point for more detailed studies.
Evidence-based software engineering, primarily inspired from evidence-based clinical
medicine, aims at employing practical evidence as a guide to the adoption of software

development procedures and practices [40].

Defining the
Purpose

)

Protocol
Definition

v

Searching the
Literature

¥

Refining based on
Inclusion/Exclusion criteria

¥

Data extraction

¥

Data synthesis

v

Reporting

Figure 2: Steps of conducting SLR
In order to properly conduct a SLR a set of particular steps needs to be taken.
These steps are demonstrated in Figure 2. The first step is to clearly define the purpose
and motivation of conducting the review. As mentioned earlier, a SLR is a method for
investigating existing publications based on a defined protocol unlike surveys or other

conventional literature reviews that aim at briefly presenting the current advances and

13
research results,. Hence, the methodical approach for conducting the SLR is characterized
by that protocol, and should be defined in the beginning of the review, to state why and
how the review is conducted [21].

The protocol is defined by asking a number of overarching research questions and
the rest of the review focuses on investigating how well or to what extent each of the
selected publications answers the questions of interest. Meaningful criteria for including
as many relevant publications as possible should be defined, to make the review
comprehensive and complete.

The next step is sea'trching the literature to find all potential publications from
well-known publishers. In this step, a group of search keywords need to be defined, by
which the relevant publications for the review can be found. After finding all the
publications according to the search keywords, based on a defined inclusion/exclusion
criterium, the decision of keeping or removing each of the papers from the pool of
publications has to be made. Selected papers should then be read and investigated and
their presented evidence related to each research question of the review should be
extracted and summarized. In order to increase the reliability of the information extracted
in this step and to avoid biased judgements and understandings, the work is required to be
peer-reviewed and the personal uncertainties about the inclusion or relevance of each
papers need to be discussed among the authors. The data is then aggregated using an
appropriate method, such as narrative, meta-ethnography and thematic [41]. The
aggregation result is then presented in different forms such as comparative charts, tables,
figures along with related discussions. Finally the review will be concluded by stating the

major findings and suggesting the possibility of further investigation and research.

14

SLRs are popular and appear in different areas of science and engineering, e.g.,
medical sciences (e.g., [42]), social sciences (e.g., [43]), mechanical engineering (e.g.,
[44]), and software engineering (see the survey in [22]). In designing and executing our
systematic review, we have benefited from previous systematic reviews, especially the
three recent ones published by Ali et al. [45], Harman et al. [46] and Engstrém et al. [47].

A software engineering mapping study (or systematic map) is a method to build a
classification scheme for the software engineering field of interest [48]. It provides a
structure of the type of research reports and results by categorizing and classifying them.
A visual summary of the results will be generated at the end. The analysis of results
focuses on frequencies of publications for categories within the scheme. Therefore, the
coverage of the research field by existing literature can be determined. The main goal of
the systematic mapping as stated by Peterson et al. [48] is to generate an overview of a
certain research area and to identify the quantity and type of the available research and
results. The study starts with defining research questions of interest, followed by
gathering the relevant publications. The required data are then extracted and the results
are presented as the outcome of the systematic map. The procedure for conducting a
systematic map is demonstrated in Figure 3. As shown in the figure, first the research
questions of interest are defined and then similar to conducting SLRs, the literature is
searched for finding the relevant publications, using defined search keywords. The
resulting pool of publications is then refined using the inclusion and exclusion criteria.

The required data is extracted, classified and reported at the end.

15

Definingthe
Research Questions

¥

Searchingthe
Literature

¥

Refining based on
inclusion/Exclusion criteria

¥

Data extraction

¥

Classification and
Reporting

Figure 3: Steps of conducting mapping study

The detailed steps of applying mentioned procedures for conducting SLR and
mapping study is presented in Chapter 3.

2.3 Related Works

In this section, first we briefly present the available literature which either study
or review SES development and then in the second part, we present several known
commercial oil pipeline operation software applications.

2.3.1 SLRs on SES Systems

To the best of our knowledge, there is no systematic literature review on the
software engineering for SES development. As a related work, we were only able to find
a systematic mapping study by Feitosa et al. [49] on software engineering for embedded
systems and mobile robot software development. They found out that the application of
software engineering in this field is increasing over the years, though some areas such as
software testing, reference architectures and aspect-oriented development still need more

attention.

16

Among the papers, we found two other publications ([26, 50]) with the aim of
extracting the state of the art in the field of SES. We considered them as “related work”
in this section, as we aimed to separate the publications which comprehensively
conducted research on SES development from the papers which investigated just a certain
stage in SDLC or focused on one issue in the development process.

The first one was a thesis by Jin Tang [26] from McMaster University (Canada) in
2009, which can be considered as a comprehensive survey conducted in order to find out
what SE methodologies and technologies are currently being used in SES. The author
also aimed to identify the areas of improvement in the field and investigate whether the
SES community is interested in adopting new “software engineering” ideas. Other
information such as educational background, working experience, group size, software
size, development practices and software quality were also gathered and reported in this
work. 47% of the respondents to this survey were academic developers and 45% were
developers from industry.

The second was also an online survey conducted by Hanney et al. [S0] in 2008
which had around 2,000 respondents. The aim of their survey was to investigate how
scientific software is being developed and used by the majority of the scientists. They
also gathered the information on how scientists gain their software development
knowledge and skills, the impact of team size on their development activities, the
importance of testing and use of super-computers versus desktops and intermediate
computers for using and developing their software. 50% of the respondents to this survey

were academic developers and the rest have different occupations such as managers,

17
supervisors, industrial research scientists, system administrators, laboratory technicians
and clinicians.

Another related work is a technical report by Greenough et al. [S1] which
reviewed the practices in computational science and engineering department and also
proposed a set of standards and best practices. They identified the elements of software
development process, classified the software projects and introduced tools, techniques,
methods and metrics to assure the quality of the end result.

In the subsequent sections (when relevant), we will provide more information
reported in the related work to give the reader a broader view in the field of SES.

2.3.2 Pipeline Operation Software

In this section we briefly introduce a number of popular software tools, which are
designed for addressing the needs of oil industry and are being widely used to better
manage the pipeline operation by proposing facilities such as scheduling of oil products
and refinery operations, and product distribution planning.

The features and brief description of the functionalities provided by these tools
are summarized in Table 2. Among these tools, as mentioned in the table, EnergyOne is
the most similar tool to our developed application, in the way that it also provides the
users with the energy management solutions. Other tools are often being used for
scheduling and oil plant management activities. All of the tools presented in the table are

commercial large-scale tools.

Software name

Ref

Description

SCHEDULE++

PIPELINE & PORT

[52]

Scheduling of crude oil delivery and unloading at a port,
multi-component batch composition and pipeline batch
transportation scheduling for oil refineries that receive their
raw components via shared multi-purpose pipelines from
multiple ports or companies that are operating those pipelines

SIMTO Scheduling

[53]

Scheduling feedstock upload, storage and tank transfer and
scheduling the feeds to process units, scheduling process
units including production quality and reaction processes,
scheduling blending and shipments of final products

EnergyOne

[54]

Customizable pipeline energy management system with
integrated pipeline scheduling, can be customized to run
independently or to work with other internally developed or
commercial software pipeline management package

H/SCHED

[55]

Scheduling crude supply, refinery operations, product
blending, and refinery product distribution. Any one or any
combination of these features can be provided

Pipeline transporter

[56]

Used in integration with Primavera project management
application and provide business process solutions that
synchronizes project system, plant maintenance and
production planning modules

2.4 Chapter Summary

Table 2: Popular oil software solutions

18

In this chapter, the general knowledge about SES development was offered. The

systematic mapping studies and systematic literature reviews were introduced and their

educational and scientific values were mentioned. SLR is mentioned to be one of the very

common forms of EBSE, providing valuable information for scientists and practitioners,

which is a methodical, comprehensive and organized review about the state of the art in a

particular domain and about a certain subject. Systematic mappings are also a good

starting point for more detailed studies as they categorize different types of primary

studies and give summary of the results.

19
Related works in the field of software engineering for SES were presented in the
second part of this chapter, followed by a brief introduction of the well-known
commercial oil pipeline operation software packages.
In the next chapter we will elaborate the details of conducting systematic mapping

and SLR on the development of SES and presents and discuss the findings and results.

20

Chapter Three: Systematic Mapping Study and SLR

In this chapter, we present the process of performing systematic mapping and
systematic literature review on software engineering for SES development besides the
results. The goal, research questions and results extracted from the literature in this study
are discussed in Section 3.2. Our selection strategy to choose articles is presented in
Section 3.3. The data extraction approach is presented in Section 3.4. In Section 3.5 we
discuss the choice of our aggregation method and in Section 3.6 we present the results
found. Section 3.7 presents briefly a discussion on the threads to the validity of this
review.
3.1 Research Method

We have performed a systematic mapping study, later extended to a SLR, for
assessing and investigating the state of the art and practice in software engineering for
SES development. This SLR is carried out using methods inspired from the guidelines
provided by Kitchenham and Charters [21] as explained in Chapter 2.

3.2 Goal and Research Questions

The goal of our study is to review the state of the art in SES, identify the
weaknesses and strengths, highlight the challenges and find out the future trends and
directions in this field from the point of view of SES dévelopers, researchers and
scientists.

Based on the above goal, we raised the following research questions. To extract
more detailed information for each of the questions, each question is broken down into

several sub-questions.

21
RQ 1- What are the demographics of studies (research space) in SES?

This RQ aims at gathering demographic information from the papers under study,
in order to prbvide the reader with various classifications related to authors, goals of the
papers, trends of publications and affiliations of the research groups. Information such as
application domains, size and complexity of the applications and number of the

“publications of each author are extracted. This RQ is the systematic mapping component
of the study. Performing these types of demographic analysis has been popular in
empirical software engineering studies and is being frequently conducted by other
researchers [46, 57-59]. The sub-questions are:
RQ 1.1- What is the trend of the publications?

The trend of the publications in the field shows how the research activities within
the area have been changing in a particular period. As a result, the increasing trend can
show this field is gaining more attention in recent years, and the body of knowledge is
growing in this area.

RQ 1.2- What are the application domains? (e.g., command and control, chemical
engineering, mathematics)

SES development is an interdisciplinary research area and Iby extracting the
disciplines which are frequently demanding the development of software systems, more
rigorous domain-dependent practices and frameworks can be suggested to better fit this
demand.

RQ 1.3- What is the size of software systems under study?
By extracting the size of the software systems in the publications, a general

overview on the scale of SES system in the publications can be achieved. This can

22
motivate the development of specific practices to fit SES development based on the
context they are expected to be used, e.g. large-scale software éystems need different
considerations in their development process compared to mid/small-scale systems.

RQ 1.4- Which programming languages are reported in each paper?

Identification of the programming languages which are being used frequently,
besides giving an overview of the popular languages in this field, can define new research
directions to address certain issues of implementation using these languages and deal
with interoperability concerns in this context.

RQ 1.5- Which authors and countries have been more active

The ranking of the scholars based on the number of their publication in the field
of SES development can potentially be used by researchers and grad students [57].
Knowing the name of the active authors who frequently publish in the field, grad students
and researchers can easily find and investigate their publications and establish further
collaboration with the authors. Knowing the active countries can also make the process
of searching for related research institutions easier by narrowing it down to certain
locations.

RQ 1.6- What is the publication trend of SES papers by focus area and what are the most
recent research areas?

Extracting the trends and recent research areas in the field gives the researchers in
the related areas the possibility of directing their future research activities toward
identifying and filling the research gaps and addressing the shortcomings of the field.

RQ 1.7- What are the activity levels of researchers from government, universities and

private sectors?

23

This question aims at providing a general overview of the research activity
breakdown in the field, based on the research group affiliation. The interested reader can
have a broad view of activity levels originated from different research affiliations.

RQ 1.8- What is the trend of publications in academia, industry and government in SES
research papers?

Similar to RQ 1.6, extracting the trends of the publications can potentially provide
the reader with a general view of where to get affiliated with in order to be more actively
involved in the field and to have a closer access to others working in the same field.
Active research groups and laboratories can be identified more easily, when the interested
researcher or grad student know where they are affiliated with.

RQ 1.9- What are the main goals of the papers?

The classification of the publications based on their goals in the review gives the
readers and practitioners a glimpse of whether the issues of their interest are covered by
the publications in the review or not. Also, together with the publication trends based on
the focus area, the classification of the goals can be used for defining future research
activities, where the related issues in the papers are mentioned unaddressed or need
further investigations.

RQ 2- What are the main challenges in SES?

This question is mainly focused on pinpointing the» challenges faced by domain
experts, software engineers, scientists, or developers in developing SES. Looking from a
software engineering mindset, software development has various phases often
summarized as requirement elicitation, analysis, design, implementation, testing and

finally maintenance. What makes the identification of the challenges more important in

24
this study is that SES can be characterized by the particular challenges that researchers
and practitioners might face during its development. Also the solutions provided can be
used as a reference in similar context to deal with the complexities of SES development
in real world. The sub-questions we raise are:

RQ 2.1- What are the challenges and solutions in requirements engineering and analysis
of SES?

RQ 2.2- What are the challenges and solutions in the design stage of SES?

RQ 2.3- What are the challenges and solutions in the development (implementation)
stage of SES?

RQ 2.4- What are the challenges and solutions in the testing of SES?

RQ 2.5- What are the challenges and solutions in the maintenance of SES?

RQ 2.6- What are the challenges and solutions in cooperation and human-related factors
of scientific software projects?

RQ 3- What are the best practices in SES development?

This question aims at the identification of context-based best practices in the
literature, that in particular are reported to make SES development a successful practice,
while dealing with the challenges of developing software for scientific and engineering
community.

3.3 Study Selection Strategy
The selection strategy we have used to choose the papers is described in the

following sections.

25
3.3.1 Source Selection and Search Keywords

We searched through available online publications. A preliminary search (using
“scientific and engineering software development” as the keyword) was performed in
IEEE Xplore, ACM Digital Library and Google Scholar to extract all the related
publications as well as to identify related online resources, e.g., well-known journals and
conference proceedings in this area.

Based on the results from the primary search, another thorough search was
performed which narrowed down the results to more specific publications, as explained
below. The end result formed the database of all papers each of which in some way
addressed our questions of interest. In order to ensure the completeness of this systematic
review, we needed to make sure that we are including as many relevant publications as
possible in the final pool of papers. To do so, we identified all potential search keywords
regarding the focus of each of our research questions. We classify these strings mainly
into two sets.

One set includes these major key words: “scientific

” 113

software/application/program”, “engineering software/application/program

&

computing
software/application/program”, “scientific computing”, “scientific computation”,
“computational science”, and “scientific software development”. The second keyword set
contained more in-depth phrases, in addition to the above ones, e.g., “analysis”,
“maintenance”, “requirement”, ‘“requirement elicitation”, “design”, “documentation”,
“implementation™, “testing”, “verification”, “validation”, ‘“architecture”, “risk”, and
“software engineering”. Then the strings from the first group were combined with the

strings from the second group to form a final set of comprehensive search key strings. By

26
combining, we particularly mean using the AND and OR operator for concatenating our
primary strings chosen from two sets respectively. Using these key strings, we also found
a group of publications which were not relevant to our search questions, e.g. [60, 61].

We also specifically looked into several specific journals and the proceedings of
several specific conferences and workshops in the area of SES, for example: the Elsevier
Jjournal on Advances in Engineering Software, IEEE Journal on Computing in Science &
Engineerir;g, Springer Journal of Scientific Computing, Workshop on Software Research
and Climate Change and International Workshop on Software Engineering for
Computational Science an(i Engineering.

3.3.2 Study Selection Based on Inclusion and Exclusion Criteria

We primarily chose papers based on their title, abstract and keywords. If not
enough information could be found in the abstract, a careful review of paper contents was
also conducted to ensure that all the papers had a direct relevance to different issues
regarding the SES. We included journal papers, conference proceedings, theses, short
papers and technical reports which addressed one or more of our research questions. To
decrease the risk of missing related publications, we also looked through the references of
the papers we found and included them if relevant. Inclusion process was not limited by
defining any specific measure for quality, quantity or outcome of the research papers,
therefore all the related empirical and theoretical papers were considered for inclusion. If
multiple papers on the same topic and/or by the same author were found, the most recent
one was included. Only papers written in English language and only the ones which were

electronically available were included.

27

The publications which had no relationship to our research questions (the ones

which did not discuss explicitly the development of SES in their research or practice)

were excluded. For example, a large number of articles in venues such as the Elsevier

Journal on Advances in Engineering Software are just presenting new software systems

or algorithms for engineering purposes (e.g., [62]) and do not discuss issues related to the

software engineering aspects of the software systems built. Such articles were excluded

from this SLR.

Venue

of Included Papers
After Applying
Search Query

of Papers Left
After Applying
Exclusion Criteria

Springer Journals (e.g., Empirical
Software Engineering, Lecture Notes in
Computer Science, Engineering with
Computers, Computer Supported
Cooperative Work)

17

10

ACM Digital Library

51

33

IEEE Computer Society Digital Library
(e.g., IEEE Software, Computing in
Science & Engineering, Agile
Development Conference, International
Parailel and Distributed Processing
Symposium, Symposium on Visual
Languages and Human-Centric
Computing)

39

23

Other venues (e.g., Elsevier Advances in
Engineering Software, Briefings in
Bioinformatics, Concurrency and
Computation: Practice and Experience,
PubMed)

57

17

Total

164

83

Table 3: Distribution of papers after applying inclusion and exclusion criteria

The author of this work together with her supervisor came up with the above

mentioned inclusion/exclusion criteria. Based on these criteria, the author primarily

decided about the inclusion/exclusion of the papers and then discussed with the

28
supervisor to make a decision whenever there was an uncertainty about including or
excluding a paper.

The earliest publication we found was from 1980 [63]. Since this study was
conducted in 2010, articles published up to this year were included. Our pool initially had
164 related publications by applying the above search query. This number was reduced to
83 papers after applying the above mentioned exclusion criteria. Table 3 shows the
details related to the distribution of the publications with respect to their publishers after
the exclusion process.

3.4 Data Extraction

To extract data, the papers in our pool were reviewed by the author of this work
and her supervisor and the information related to the research questions was extracted.
The type of data and evidence collected from the papers related to each research question
are summarized in Table 4.

In order to extract the above evidence from the studies, we needed to categorize
primary studies based on the type of the evidence they presented regarding their research
method. The breakdown of the publications based on their research method (inspired by
[64]) is shown in Table 5.

As shown in Table 5, we grouped the primary studies based on their research
method in several categories. In the empirical categories, we grouped all papers
presenting case studies, field studies, surveys, experiments and reviews. We also grouped
all the articles presenting experts’ point of views and insights which were not explicitly
supported by empirical evidence. We grouped together all the papers that presented

related concepts or proposed a new idea, but the concept or idea was not empirically

29

evaluated. Experience reports were also grouped together. It is worth mentioning that for

all of the papers except the ones categorized under “concept implementation”, the

category was explicitly mentioned in the abstract or introduction of the papers. The

interested reader can refer to appendix A, to find out more about the evidence type and

main focus of each of the primary studies.

Research Sub-questions Data Collected
Questions
RQ1 RQ 1.1 Articles’ publication year
RQ 1.2 Application domains
RQ 1.3 Software system size
RQ 1.4 Programming languages used
RQ 1.5 List of authors and the country where the research group is
located
RQ 1.6 The publication trend of SES papers per research goal and
Recent SES research areas
RQ 1.7 Research group affiliations
RQ 1.8 Publication year and research affiliations
RQ 1.9 Paper’s main goals
RQ2 RQ 2.1 Evidence from the studies which discuss requirements
engineering and analysis
RQ 2.2 Evidence from the studies which discuss sofiware design
RQ 23 Evidence from the studies which discuss software
implementation
RQ 24 Evidence from the studies which discuss software testing
RQ25 Evidence from the studies which discuss software
maintenance
RQ2.6 Evidence from the studies which discuss human related
aspects
RQ3 Evidence of best practices
Table 4: Data extracted for each research question
Evidence Type found in Publications # of papers
Case study and Field study 16
Survey 6
Experiment 1
Review 1
Expert views without empirical backup 12
Concept implementation (proof of concept) 35
Experience report 12
Total 83

Table 5: Breakdown of primary studies based on the research methods

30
3.5 Synthesis/Aggregation Method

In this stage we needed to aggregate and synthesize the data extracted from
primary studies. Synthesis is required to add more meaning and readability to the results.
Since we had to deal with different types of evidence with various strength and
creditability as the result of different research methods found in primary studies (as
mentioned in more details in previous section), we selected narrative synthesis method
[65]. In this method narrative description and explanation of the evidence taken from
primary studies are presented along with commentary and interpretation [41].

There also exist other synthesis methods as mentioned in [41] such as meta-
ethnography, thematic, and cross-case analysis. In meta-ethnography, primary studies are
translated to one another either by approving each other, rejecting each other or building
an argument line. In the thematic method, the recurrent themes in primary studies are
identified and the findings are then summarized and presented under these themes.
Finally in cross-case analysis, evidence is coded based on the identification of broad
thematic headings and then presented by describing differences and commonalities.

We did not perform our synthesis based on the above techniques since the
emphasis of this research was to extract .all the related information from available
literature to address our research questions, thus the focus of each research question was
considered as a keyword or theme to search for information through the publications.

3.6 Results

We present in this section the findings of the review based on the questions we

posed in Section 3.1. The results are presented for each of our research (sub-) questions.

31

We have done our mapping study in order to answer the sub-questions of RQI.

For RQ2, we classified the related papers into six groups (inspired by SDLC) as follows:

papers discussing (1) requirements engineering, (2) design, (3) implementation, (4)

'testing, (5) maintenance, (6) cooperative and human related aspects. Each group

provides data for one of the sub RQs. Since some of the papers discussed more than one

stage in SDLC, these groups are not disjoint groups and there exist overlaps among the
papers that are included in each group.

3.6.1 RQ 1- What are the demographics of studies in SES?

In this section, we present the findings from our systematic mapping study. We
focused on demographic characteristics which reflect the variety and frequency of the
research on different areas and domains for which SES are developed.

3.6.1.1 RQ 1.1: What is the trend of the publications over years?

We counted the number of publications in each year. Publication’s trend from
1980 to 2009 is shown in Figure 4. The publication year of the earliest paper [63] in our
pool was 1980 which proposed new techniques that can be applied to complex real-time
flight software systems for requirements specification of the software systems built for

the US Navy’s A-7 aircraft.

32

23
L]
-]
=)
= 17
=]
L3
=
=
=])
&,
ot
]
8
£ b
E 8
=
=
14 s
4 4 4 a
2 2
1 1 1 1 1
lOOOD.O.DOOOODID. .I o
@ vl O M W N D0 D v AN M W WD 0D W NN O D
-~ - - - - - ~ B~ - - - - T - B~ - B~ L = S~ aB ~ A T~ S~ A - oS = A T~ L T - W — T — R — I — N — T — S — B — B —]
LB - - AR - AT - AR - DU - L - S~ S - S B - N~ AT - SR~ L - SO - AR - L - SR - S — T I I - I -]
v el ot e v v vl e v et el el el v e el v e e e N OO O N NN NN NN

Figure 4: Number of the publications between 1980 and 2010
As we can see in Figure 4, there were very few papers until 1995. The number of
the publications starts to rise sharply in 1997. Our pool does not have any paper
published in 2001. We had most of the paper publications in 2008 (17 papers) and 2009
(23 papers). Also, we notice that the cumulative number of the publications has almost
doubled from 2006 (48 papers) to 2009 (81 papers).

3.6.1.2 RQ 1.2: What are the application domains?

We categorized the publications with respect to their application domains. The
papers distribution is shown in Table 6.

Based on the table, 41% of the papers did not mention any specific domain for
their study. About 15 % of the papers (mostly survey and case study papers) have
conducted research on several disciplines. Among other domains, physics and biology

were the most common domains.

Reference Discipline Percentage of papers
Automotive industry 1.2%
| Agriculture 1.2%
Weather forecasting 24%
Mathematics 24%
Chemistry 3.6%
Aerospace engineering 3.6%
Image processing 6 %
Biology 8.4%
Physics 14.5 %
Mixed disciplines 15.7 %
Not mentioned 41 %

Table 6: Publications Application Domain

3.6.1.3 RQ 1.3: What is the size of software systems under study?

33

Not all the papers revealed detail information regarding size or complexity of the

software systems under study. However, about a dozen of the papers did mention that

information. The information we found in other papers about the size of their projects is

summarized in Table 7.

Name of the Description Lines of code
application (LOC)
Java Imaging Utilities API for image manipulation ~43,000
[66]
Art of Ilusion [66] 3D model and image rendering ~65,000
UM (Unified Model) A code suite for numerical weather prediction and climate | ~830,000
code base [10] models
Kahindu Medium [66] Tool for image manipulation using image filters ~108,000
Osprey [29] A component of a large weather forecasting suite ~150,000
FALCON [23] Product performance evaluation software ~405,000
HAWK (23] Manufacturing process analysis software ~134,000
CONDOR {23] Product performance simulator ~200,000
EAGLE [23] Signal processing software Less than
100,000
NENE [23] Molecule modeling software ~750,000
Ml [67] 0O environment for integration of scientific applications ~140,000
CCl1,CC2, CC3,CC4, Computational Chemistry software 10,000...320,000
CC5[36]
PMGT [68] Parallel Mesh Generation Toolbox ~3,000
BlobFlow [69] Two dimensional Navier-Stokes equations solver ~10,000
~:Approximately

Table 7: Application sizes in LOC

34

Hochstein et al. [24] mentioned that they are working with a group of projects for
computational simulation (e.g. on solid mechanics, fluid mechanics, combustion)whose
size is between 100-500 KLOC. Easterbrook et al. [10] presented a graph on the growth
of their project over 15 years where they showed the project size was about 110 KLOC in
1993 and grew to around 830 KLOC in 2009. Kelly et al. [70] conducted a study
assessing the quality of 10 SES whose size varied between 1 to 100 KLOC.

As seen in the above table, PMGT [25], which is a parallel mesh generation
toolbox is the smallest tool in our pool with 3 KLOC. UM (Unified Model) system [10]
which is a software for numerical weather prediction with 830 KLOC is the largest
project among the others.
3.6.1.4 RQ 1.4: Which programming languages are being used?

In our paper pool, we had 72 papers mentioning the programming language used
in their projects. As shown in Figure 5, the majority of the applications were written in
Fortran. The most widely used versions of Fortran, as mentioned explicitly in seven
papers out of a total of 24 papers, were versions 77 and 90. In nine papers, Fortran was
being used together with a second (or more) language, e.g., C++. After Fortran, Java,
C++ and also Python are the most widely used ones. Matlab and Perl come next, while

the use of Ruby and PHP was only reported in one paper.

35

Python, 14%

B PHP, 1%

= Ruby, 1% ® Fortran, 31%

u Ped, 7%

® C++,15%

» Java, 19%
8 Matiab, 12%

Figure 5: Programming language distribution

In a study by Carver et al. [23], the authors reported five case studies of SES
development projects and each project was from a different scientific or engineering
domain. They found out that the primary language of the projects does not changes over
time, meaning that Fortran remained the dominant language in the projects and the use of
high-level and object-oriented languages (such as Java or C++) were relatively low.

In a paper by Cary et al. [71], a comparison between Fortran 90 and C++ was
undertaken when being used for OO scientific programming. C++ is identified to have
full support for inheritance and polymorphism while Fortran 90 does not support
inheritance. It has been shown that Fortran 90 specific features such as mathematical
arrays and specifiable precision of floating-point numbers can be added to C++ by the
implementation of class libraries.

To support portability and reusability, C++ supports templates which are not

supported in Fortran 90. Though primary C++ compilers uséd to be slower than Fortran

36
[72], optimized C++ compilers can be used now to generate executable programs that can
compete with those generated by Fortran compliers in terms of performance.

As discussed by Veldhuizen et al. [72], there is no more a need for mixed-
language programming where the framework of the programs were written in C++ and
ihe routines which needed to have high performance were written in Fortran. In another
article by Veldhuizen [73] the performance of C++ in comparison to Fortran is shown to
be practically better (i.e., higher performance) using different known benchmarks
(frameworks to assess the performance) in linear algebra, and array stencilling.

We tracked the trend of Fortran, Java and C++ as the most popular languages over
the publication year. The cumulative numbers of papers reporting on usage of Fortran,
C++ or Java as their choice of programming languages are visualized in Figure 6.
Although it is not easy to draw clear conclusions on the increasing or decreasing
popularity of any of these languages, but we can see than the use of Java as their choice

of programming languages by SES developers is growing faster than that of C++.

=

£

E 30,

E 25/{1 e FOrtraN

e 20 C++

Q i....Java

oo 15 1

£ 5 r

g$= 10

§ 51

& P

g 0\ T | T 1
(v .

5 © 5 N P A Ao o A

s &S S ,805" & @& S &S (‘9@

Figure 6: Cumulative number of papers reporting on usage of Fortran, C++ or Java

as their primary choice of programming languages

37

Also according to the survey by Tang [26] C, Fortran and C++ were the most
popular programming language used in SES development. The use of other languages
such as C# and VB.Net is also indicated to be popular among the respondents of the
survey.

3.6.1.5 RQ 1.5: Which researchers and countries have been more active?

To conduct a bibliometric analysis to rank active researchers and countries, we
counted the number of papers published by each author in our pool of papers. Results for
the researchers who have at least two or more publication in our paper pool are shown in
Figure 7.

Diane Kelly, affiliated with the Royal Military College of Canada {3, 70, 74-78]
and Judith Segal from Open University in the UK [6, 8, 20, 33, 79-81] with seven papers
have the lead among all the authors in our pool. Douglas Post, Richard Kendall and

Jeffrey Carver with five papers stand next.

7
6
§5‘
a
- 4
S
s 3
a
E 2
E
x
1
o e TR st SR crs e, H...... - ... - e
2B O 5 TS LEESTSE 225 B E L £ o E = = =
s pEisiiscsErecEse3ssse5eks
g 2 x g 3
X a " E§T s w E £ 3 © = = 8 X 2
® I.I.l'3 : . - . z ;m -§ = E oo 5
ssuli;iiEsEidsgzanlzsgci
s 5 290 v °=sﬂ'$" g8 x = o - -
—Sg "= s :.."—‘uh"‘é = 5 m<'|nu|°.
- e 4 : 4
°“a§’§ﬂga"fz‘”°§§;"g £ 80 »>535 8
35z g§“"°£8% z o S§Egx T85°%
e « § 8 ° 228 o
)
o

Figure 7: The most active authors

38

We also wanted to see which countries are more active in this area. The
distribution of countries based on the author affiliations is shown in Figure 8. If a paper
had several authors from two or more countries, we added a weight to each of those
countries (sum of the weights for each such paper being equal to 1).

As seen in the figure, USA, Canada and the UK are the top 3 contributing
counties to the literature on SES. Only 18 countries have published papers in this field.
Except Australia, Brazil, India and Japan, all of the other 14 countries are from North

America or Europe.

Al
o
3

E-3
o
1

w
o
}

of publications
~N
(-]

[
o
L

s,vfo *‘é\"(‘b"‘& w"ﬁ,@,&eﬂ’f‘*bo

(-}

Figure 8: Active countries in publishing research papers on SES

3.6.1.6 RQ 1.6: What is the publication trend of SES papers by focus area and what are
the most recent research areas?

To analyze the publication trend of SES papers, we used the same categorization

as in Table 9 and counted the number of the papers published in each year.

39

@ Characteristics, tools
and methods

® Human issues

@ Languages

< Recommendations and
guidelines

Requirements ‘

@ Design and architecture

® Risks

< Testing

1979 1984 1989

Figure 9: Timeline per publication focus area

Results are shown in Figure 9 using a bubble chart. The size of the bubbles in
each category per year is proportional to the number of the publications (as marked in the
figure with numbers 1, 3 and 5 as samples) for that category in that year.

As it is shown in Figure 9, most of the recent publications in our pool were about
testing, design and architecture and human related issues in SES development as well as
the papers on characteristics, methodologies and tools. This shows these areas have
gained more attention in the field but other areas such as requirement elicitation and
maintenance still need further investigations.

The most recent research areas within the last 5 years (2006-2010) were also
extracted and shown in Table 8 to give the reader a detailed view of the recent

publication’s topic in the field.

Toolbox

Year Topics References
2010 | SE in Embedded and mobile robot software [49]
Code development for computational Chemistry [82]
2009 | SE for climate change [10]
Bioinformatics Software development [35]
Scalable software development [36]
Developing high quality Parallel Mesh Generation | [68]

Testing SS

[75, 76, 83-85]

SES development characteristics, practices and problems

[26, 50, 74, 80, 81, 86-
88]

SS design [89-92]
SS development by generative programming [93]

2008 | SES development characteristics, practices and problems | [4, 6, 8, 33, 51, 94-96]
Developing weather forecasting code [29]
High-performance computing [34]

SS testing, verification and quality assessment [69, 70, 77, 97]
Large-scale parallel scientific code development [24]
Dealing with risk in SS [78]
Developing quantum chemistry science application [98]
Managing SS complexity [99]

2007 | SES development characteristics, practices and problems | [3, 20]
Development environments [23]
High-performance computing characteristics and risks [100, 101]
Requirement analysis [102]

2006 | SES development characteristics, practices and problems | [5, 103]
Design complexity [66]
Development of requirement documentation [25]

| Agile methods in biomedical software development [104]
Challenges in automotive software engineering [105]
Language interoperability issues [106]

Table 8: Recent research topics in SES development

40

3.6.1.7 RQ 1.7: What are the most active sectors for software systems under study? (e.g.,
government, universities, private sectors)

By extracting the research group affiliation information from the papers, we

categorized them into four groups: (1) governmental research groups such as NASA, (2)

the ones affiliated with universities, (3) corporate research groups and laboratories, and

(4) collaborative work (a combination of two or three other sectors). The results related to

41

this classification are shown in Figure 10. Not surprisingly, majority of the works have

been published by university labs and research institutions affiliated with universities.

® Collaborative works

Corporate research 25%

groups/labs
19%

Governmental
%

B Universities
49%

Figure 10: Classification of research group affiliations

3.6.1.8 RQ 1.8: What is the trend of publications in academia, industry and government

in SES research papers?

We gathered the number of the publications of each research sector over the

publication year in order to study the publication trends for each sector. The results are

depicted in Figure 11.

50
45
40 == == wgovernment
35 e yniversity
g 30 s e s e ¢ corporate research/lab
2 25 anmme collaborative work
]
o
% 20
£
15 RIXXXY) A
10 *
5 - - - -
o .. X X X X.J - -
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Figure 11: Cumulative trend of publications in different research sectors

42
As shown in the figure, the number of publications in each of the four categories
follows an increasing trend over years. In the academic section, which surpasses other
sectors significantly, the growth is noticeably quicker. Corporate research groups/labs
have started publishing papers in the field way ahead of the other groups. The
publications in intersection collaborations are also increasing rapidly in recent years.

3.6.1.9 RQ 1.9: What are the main goals of the papers?

The publications were categorized based on their main goal, in a way that
categories have the least possible overlap with each other. We came up with seven
different categories as shown in Table 9. The majority of the papers fall under the
category named “characteristics, methodologies, tool and environments”. In this group,
the papers mainly discuss different approaches (e.g., using algebra systems, problem
solving environments,), methodologies (such as Agile) as applied to the development of

SES as well as characteristics of SES (such as high-performance computing systems).

Main topic of the paper Paper references # of papers
Characteristics, development 7, 10, 23, 24, 26, 29, 31, 33, 34, 25
methodologies, tools and environments 68, 82, 86, 87, 94-96, 100, 104,

107-113]
Issues and challenges related to different | [3, 8, 20, 35, 50, 79-81, 114] 9
types of developers and their attitudes
Requirements [25, 63, 102, 115] 4
Design and architecture [66, 67, 89-93, 98, 99, 105, 116- 22
127]
Testing SES [70, 75-77, 83-85, 97] 8
Different types of risks [78, 101, 128] : 3
Lessons learned, guidelines and [5, 36,51, 74, 88, 103, 129] 7
recommendations for SES development
Languages used in the development {71, 72,106, 130, 131} 5

Table 9: Classification of the primary studies based on their main goals

43
The second category called “issues and challenges related to different types of
developers and their attitudes” mostly includes the papers which discuss issues originated
from the differences between scientists and software engineers. “Lessons learned,
guidelines and recommendations” group consists of the papers discussing the experiences
of the authors and their proposed best practices. The rest of the groups’ names are self-
explanatory as shown in Table 9.

3.6.2 RQ 2- What are the Main Challenges and Solutions in SES?

We investigate the challenges, solutions and other observations in further detail
next through RQ 2.1-RQ 2.6, which focus on each SDLC phase.

3.6.2.1 RQ 2.1: What are the challenges and solutions in requirements engineering of
scientific software?

In order to provide the reader with the type of evidence we had in each section,
we counted the number of different papers in each category of evidence. We had 16
papers mentioning the issues related to the requirements in SES development. Among
them, there are three case studies, one field study, one experience report, two surveys,
three concept implementation and six expert views. Table 10, provides information on
these papers main focus, evidence type and context besides a brief description of the
challenges, solutions and observation reported in each papers. ‘General’, under the
‘Context/Domain’ column in the table means no particular context was mentioned in the
papers, or the authors explicitly claimed that their findings are applicable to the broad
context of SES development. The “Specific to SES” column shows whether the

challenges presented in the literature are specific to SES development or they are

44

common concemns of any type of software development practice, and whether the

solutions suggested here are also being adopted elsewhere or not.

Ref Paper’s main ® Challenges Solutions/Observations | Specific | Context/
focus % g to SES Domain
5:% 2
[95] SS development | Not being able to fix the | Solution: starting the Challen | Developing
experiences and | & requirements when there | development with ge: Yes | control and
practices 2 exists no solution for the | estimation of basic Solution | data
3 scientific/engineering requirements :No acquisition
= problem software
[79] Investigating Yes Space
the case where scientific
software > sofiware
engineers E developme
developing - nt
software for | &
O
research
scientists, using
a traditional,
staged,
document-led
methodology
[100] | SE for high Observation: the No High
performance requirements conform to performanc
computing mathematical models e systems
z
(33] Improving SS | 'S Solutions: engaging Yes General
development 5 scientists in software
= development
m
-Gaining a correct and Yes
precise understanding of
the problem domain and
application requirements
23] Identification of Yes High
the steps and > -Complexity of performanc
tools in| 3 requirement e
developing o specification computing
high- S
performance © -Complexity of
software requirement elicitation
[25] Presenting a ° Solutions: writing the No General
methodology = § requirements in a
for g 8 testable way
development of | § E
the © E‘

requirements

45

Difficulty in prioritizing

No
non-functional
requirements
[80] Challenges of Gathering of the Yes Software
software requirements by engineers
engineers z scientists developing
2 software
% for space
i scientists
and
biologists
[68] Proposing a Observation: use of the No Mathemati
methodology 2 requirement as a contract cs
based on % between developers and
software 9 testers to promote
requirement S verifiability
specification
[63] Presenting new Not having a reliable | Solutions: Documenting | No Flight
techniques for resource for further | the confirmed software
making reference, when facing a | requirements between developme
requirements g conflict between | the developers and nt
specifications .% software engineers and | domain experts at each
precise,] domain experts stage
concise, :
unambiguous, S
and easy to
check
[115] | Proposing a Difficulty of validating No General
new template the requirements
for requirement
specification
[113] | SE for high Observation; the | No High
performance requirements conform to performanc
computing mathematical models € systems
(112] | SE for high No High
performance performanc
computing € systems
[105] | Developing 3 Dealing with innovative No Automotiv
software for ; and modern e software
automotive 2 requirements developme
industry fia] nt
[101] { Identifying Dealing with risks in No High
different risks requirement engineering performanc
in high e
performance computing
computing

applications

46

[50] Surveying how Observations: enough | No General
scientists attention is paid to
develop and use requirement elicitation
SS when the development
- team is large
[26] Developing g Observation: use of | No General
scientific and A informal specifications is
computing more common-
sofiware correctness and

reliability are found to be
the most important non-
functional requirements

Table 10: Summary of the papers discussing requirement issues

In the following sections more details on the challenges, solution and other
observations concerning the requirement in SES are presented.
Challenges

For a developer who is not an expert in the scientific/engineering field of a to-be-
developed software, gaining a correct and precise understanding about the problem
domain and the application requirements is the very first challenge [33]. As reported by
Segal in [80]: “scientists may not appreciate that the gathering of requirements at both the
high (functional) and low (user) level is often a significant part of software
development”.

Another characteristic that tends to be problematic is that, in most of SES
projects, the requirement cannot be fixed and finalized in the early stages as reported by
Segal in [33]. Specially, while developing software to discover a scientific or engineering
problem for which there exists no prior solution, it is very challenging to fix the
requirements upfront [23, 100].

Requirement elicitation, though being very important, is often neglected in

scientific software development according to Smith [25]. This is in particular problematic

47
when in the design or implementation phase, ambiguities begin to emerge and there exists
no criterion on how to resolve them easily and properly. On the other hand, as mentioned
before one specific characteristic of requirements in SEé is that usually they cannot get
finalized at the beginning of software development as stated in the experience paper
reported by Segal [79].

In most scientific applications, the requirements specification is very difficult to
validate because the quantities are often continuous in comparison to other typical
commercial software where values are discrete[115].

In the domain of automotive systems, a “fitting requirements engineering
method” is stated to be a big problem [105], as most of the requirements are innovative
and modern.

In terms of non-functional requirements, especially performance, usability and
portability, building a system with a realistic and feasible trade-off is another great
challenge. Smith discusses in [25] that it is often not trivial to give a valid priority to one
non-functional requirement factor over another.

Kendall et al. in their study [101] identified the risks of the requirement phase of
high performance computing applications such as unpredictability of the requirements,
failure to address the constant evolution of the requirements and having incomplete,
unclear and inaccurate requirements.

Possible solutions

According to another paper by éegal et al. [33], the nature of requirements in the

case of SES often leads to the above challenges, unless the scientists themselves are

entirely in charge of software development. Otherwise the developers must reach to a

48
good understanding of the domain before starting the development, which is not a trivial
task.

After validating their understanding, the deveiopers should be committed to
document what is already confirmed between them and the domain experts to build a
reliable resource for further references, as suggested by Heninger [63].

Smith [25] suggested that the requirements specification should be written in a
way that it is testable and easy to validate. According to Achroyd et al. [95], one of the
characteristics of a successful scientific software development project is that it will start
with an estimation of the basic requirements and later, as all parties leam how to
cooperate efficiently, detailed requirements would be added to support extra
functionality. The authors highly recommend not putting too much demand on the
domain experts to finalize the requirements upfront.

Other observations

According to a recent survey by Hannay et al. [50], developers of SES working in
large teams are more likely to pay enough attention to requirement elicitation and
analyzing rather than the developers in small teams and the ones who are working on
small projects.

In high performance systems as stated by Carver [100] and Johnson [112, 113],
the requirements often must conform to sophisticated mathematical models and can be an
executable model in a system such as Mathematica.

Smith in [68], discussed about the critical role of requirements to quality of the

software and mentioned that “software requirements serve as a contract between

49
developers and testers; therefore, the SRS (software requirements specification) promotes
verifiability by giving the testers something to verify against.”

According to Tang’s thesis [26], 70 percent of the respondents to his survey were
using informal specifications for their project requirements. Among non-functional
requirements, correctness and reliability are rated higher as the respondents believed that
the quality of the software highly relies on them. On the other hand, security and memory
usage were the least considered non-functional requirements.

To provide empirical evidence on the above issues from our own experience
based on our meeting minutes with our industrial partners, we report next the actual
challenges we have been experiencing in our ongoing major optimization software
development project for oil pipelines’ pump operation [132]. When the project started in
early 2008, the team became involved in requirements engineering and analysis of the
system.

The team was composed of three software engineers (one of whom had good
knowledge of optimization techniques), one civil engineer also with good knowledge of
optimization techniques, and a mechanical engineer (as domain expert) from an industrial
firm in Alberta, Canada. Although the final product of the requirements engineering
phase was of good quality, the team had numerous challenges along the process, e.g.,
finding a consistent vocabulary to understand one another, prioritization of major features
versus minor ones and deciding on the interoperability requirements of the to-be-built
system with existing software systems used by the industrial partner. One of the software

engineers remembers many occasions in which he was struggling to use less-technical

50

software engineering and optimization vocabulary to be able to smoothly communicate
with the domain experts (i.e., the mechanical engineers).

3.6.2.2 RQ 2.2: What are the challenges and solutions in the design phase of scientific
software?

We discovered 21 papers mentioning the issues of design in SES development.
The breakdown of the evidence type of these papers is as follows: two surveys, two case
studies, one experience report, 13 concept implementations, one experience/interview,
one case study/survey and one expert view. Table 11 summarizes these papers main
focus, context/domain and the reported challenges, solutions and observation regarding

the design in SES development.

Ref | Paper’s main | Challenges Solutions/ Specific | Context/
focus g 2 Observations to SES Domain
E z
[117]] Investigation -Unrealistic user No Developing
of the risks in expectations a
a modeling - Premature framework
framework obsolescence of the for
and how to 2 design assessment
address them | .2 of how
E, future
R alternative
g agricultural
» and'
2 environme
2 ntal
§. polices
o affect
sustainable
developme
nt in
Europe
[34] Characterizin | .. ., | Not having background No High-
g high- T £ | toapply OO principles Performanc
performance - @ : e-
computing 82 Computing
community O

51

(101] | Identifying Having complex No High
different risks € requirements makes the performanc
g2 design complex e
w computing
[121]] Using OO The complexities of Yes Satellite
technology modeling: physical data
for the design (problem at hand), processing
of satellite mathematical software
data (formulation) and
processing software (practical
software solution) modeling
[125] | Investigating Incorporating No High-
the componentized performanc
incorporation message-passing e scientific
of message libraries in a computing
passing parallel/distributed
systems into environment
component-
based systems
{116] | Introduction Incorporating Solution: using design No Dynamic-
on using reusability and patterns systems
patterns for maintainability simulation
SS g
[119] | Presenting s No Computatio
design g nal life
patterns for g sciences
SS and =
explaining g
their benefits o
{111} | Proposinga § Abstracting and Solution: using OO No Multi-
framework O managing data and technology to manage physics
for multi- functions in their complexity and to simulation
physics modules support reusability
simulations
[67] Integrating Software reusability No Builidng
scientific scientifc
applications software
models
[127] | Presenting the Solution: using No High end
Common component-based scientific
Component technology to support computing
Architecture reusability and
for managing integration

the
complexity in
high-
performance
scientific
computing

52

[126] | Developing Interface design- No High-

SS integrating code from performanc
component different programming ¢ scientific
technology languages simulation

[99] Introducing a The complexity of No High-
tool to learning the details of performanc
perform rapid the component e scientific
component interface, while using computing
prototyping component-based
while technology
maintaining
robust
software
engineering
practices -

[93] Generative Difficulty of creating Solution: using No Image
programming domain-specific generative retrieval-
for SS solutions from reusable | programming approach poison
developments software components solver

{921 Integrating Integrating legacy Solution: use of No Dealing
architectural systems with modern architecturally-aware with legacy
constraints systems interfaces to wrap the scientific
with legacy scientific code of the code
SS legacy systems to

integrate them with
modern systems

{[124] | Proposing a Observation: use of No High-
standard to common component performanc
support architecture e scientific
interoperabilit computing
y among
high-
performance
scientific
components

911 Proposing a Observation: engaging | No General
framework to domain experts in
involve the design were found
domain successful
experts in
design .

(311 Details of Observation: well- No Computatio
developing ™ design reduce data nal biology
software for % = complexity, ease access and
computational | T &, to modeling tools and bioinformat
biology and E‘ 2 support integrated ics

bioinformatic
s

access to diverse data
resources

53

[66] Investigating Observation: the No Scientific
the complexity of a imaging
complexity of software system is very software
design Z dependent on the design

2 knowledge of the
§ developer

[89] Usabilityand | © Managing user No Imaging
user-centered expectation in user- software
designcase centered design developme
study nt

[50] Surveying Observation: SE No General
how scientists practices are more
develop and commonly used for
use SS o larger project and teams

[26] Developing E Observation: system No General
scientificand | 2 design specification and
computing detailed design
software specifications were

provided by the
designers
Table 11: Summary of the papers discussing design issues
In the following sections more details on the challenges, solution and other

observations identified by our survey concerning the design in SES are presented.

Challenges

According to Gupta et al. [121], the design of a good quality SES needs to tackle

three different modeling challenges. First, the physical modeling in which the

phenomenon and its underlying basics must be understood. Second, the mathematical

modeling, which is the process of formulating physical models, and finally the software

model which refers to the practical solution for the problem inspired by previously built

physical and mathematical models.

According to the experience of Basili et al. [34], many scientists do not have

enough background in object-orientated analysis and design and, subsequently, are not

very skilful in developing complex object-oriented programs.

54

Bernholdt et al. in [125] identified the issue of incorporating componentized
message-passing libraries in a parallel/distributed environment, which needs major
modification of application code and may lead into runtime overhead.

The authors in [117] described the trade-offs in the design of their modeling
framework. They identified “unrealistic user expectations” (or business goals) and
“premature obsolescence” as the main challenges in their design process. They also
reported the difficulty of “incorporating those architectural aspects in the design which do
not comply with the business logic”.

Kendall et al. in their study [101] identified the risks of the design phase of the
high performance computing applications as having difficult requirements and
expectations, and the need for a design which supports modularity, maintainability,
portability, reliability and usability in general.

Possible solutions

The use of deéign patterns in large SES software development projects have
shown remarkable benefits toward adding more reliability, reusability and better
maintenance as reported by Blilie in [116]. He argued that this is only possible by
introducing the concept of object-oriented design which has its own pros and cons in the
context of SES. Object-oriented languages (e.g., Java and C++) are known to have higher
computational overhead compared to procedural languages (such as Fortran) while, most
of the time, performance and speed are important attributes of a successful end artefact.
That is one of the reasons why most of the current scientific software have been

developed in C and Fortran as reported in [34, 116].

55

In another paper by Cickovski et al. [119], again the benefits of using design
patterns such as speed, memory consumption, flexibility, and software maintenance were
mentioned.

Authors in [111] described the use of object-oriented technology for abstracting
and managing the data and functions in their modules. As the size of projects continues to
increase, the benefits of using object-oriented design can outweigh its drawbacks because
the code will become more and more complex to manage. In order to support the
reusability of the code and also in order to integrate the code and tools from different
disciplines, more and more SES developers are adopting the object-oriented technology,
according to the experience of Spinelli et al. [67].

According to Bernholdt et al. [127], using object-oriented methodologies can lead
to a robust framework for different libraries, where components can be fitted and used
toward better managing different parts of the system. Components are reusable software
packages which embody a group of useful functions. Component technology tries to
resolve major issues in software reuse and integration such as barriers in interface design,
physical deployment and integrating code from different programming languages mostly
by removing the language and compiler dependencies as reported in [126] by Epperly et
al. However looking from another perspective, employing component-based technology
for SES design can add to the complexity, as the user of the component needs to learn the
details of interfaces for managing the systems interactions and the conventions of the
component model as reported by Allan et al. in [99].

Arora et al. in their paper [93] described the generative programming approach

for developing SES. In this approach the desired software system can be automatically

56
built from the given specifications and domain-specific solutions can be created from
reusable software components. The approach has been shown to increase the level of
abstraction while decreasing development time and costs.

Woollard et al. in their paper [92] discussed the benefits of software architectures
and proposed the use of architecturally-aware interfaces to wrap the scientific code of the
legacy systems in order to integrate them with modern systems.

Other observations

According to Gentleman et al. [31] “well-designed scientific software should
reduce data complexity, ease access to modeling tools and support integrated access to
diverse data resources at a variety of levels.”

The complexity of a software system is more dependent on the design knowledge
of the developers rather than the application domain or the type of the system that is
being developed as reported by Larsson and Laplante in [66].

In this phase, again as for the implementation, employing software engineering
practices will gain its at.tention asA the project and team size grow according to the survey
by Hannay et al. [50]. Thus in small size projects, to come up with a systematic and
robust system design remains a challenge.

Macaulay et al. [89] investigated the design usability and user-centered design in
their project called Usable Image. For that purpose, they tried to investigate the details
related to their use environment and to increase their user-base to contain all possible
users even outside their labs. They experienced the challenge of managing user
expectations as in user-centered design the user will get used to seeing prompt responses

to their feedbacks.

57

Armstrong et al. [124] proposed a CCA (Common Component Architecture) for
developing high-performance SS as in “high resolution and complex physical sub-models
for turbulence, chemistry, and multiphase flows”. They developed a single component
interface specification for supporting the interactions among scientific components. The
architecture consist of a SIDL (Scientific Interface Definition Language) to describe the
interfaces, CCA ports which defines the communication model for component
interactions and CCA services which is a framework abstraction.

According to Tang’s thesis [26], 45% and 27% of respondents to his survey,
mentioned that they have system design specification and detailed design specifications,
respectively. Software reuse reported to be very popular among the developers as only an
insignificant of the respondents indicated that they are not reusing their software.

In terms of human aspects of design, putting the domain experts in charge of
designing their own product by providing them with the required tools and techniques is
shown to be a success factor by Fischer et al. [91]. Such a framework is called “meta-
design” by the authors of [91]. In this framework, different techniques and methodologies
are encompassed to give domain experts the freedom of acting as a designer by being
involved with the development process rather that just limiting their role as the end-users
of the system. The human-problem interaction is supported while the focus is not on
building the final solutions. The users/developers are provided with a space in which they

can build their specific solutions to fit their own needs.

58

3.6.2.3 RQ 2.3: What are the challenges and solutions in the implementation phase of
scientific software?

We had 14 papers mentioning the issues of implementation and coding in SES

development. Among the papers we had two surveys, seven concept implementation,

three experience report and two expert views

extracted from these papers.

. Tablel2 summarizes the information

Ref Paper’s main ° Challenges Solutions/ Specific | Context/
focus 2 o Observations to SES Domain
g5
2
77 Identifying Correctness of the No A mixture
different types implementation- poor of
of risks in code documentation engineering
testing SS Y and
development E scientific
“n disciplines
[26] Developing Observation: industry | No General
scientific and is much more careful
computing compared to
software academia in terms of
coding standards
[106) | Proposing an Language No Langauge
approach to fill interoperability interoperab
the language ility
gapin SS
[111] | Proposing a No Multi-
framework for physics
multi-physics Concurrent code No simulation
simulations o implementation, check-
2 pointing
[122] | Proposing the 2 Limitation of software Solution: using No Scientifc
use of a g libraries simple declarative library
compiler to = annotation language implementa
automatically g that describes certain tion
optimize fé aspects of a library’s
software library | 2 implementation to
implementation | S optimize the use of
s the libraries
[98] Component- Implementing and Solution: building a No Quantom
based adopting uniform generic package that chemistry
architecture in interfaces in component- | enclosed uniform application
quantum based architecture- interfaces to manage developme
chemistry SC managing software software nt

dependencies and build
systems

dependencies

59

{123] | Proposinga Observation: No General
new proposing an
architecture for infrastructure that
SC application provides the user
development with an easy
programming model
and APl and
incorporates
different types of
computational
modules
[110} | Using computer Observation: using No Generating
algebra systems computer algebra scietific
to automatically systems code
generate a
computer
program
[130] | Automatic SS Observation: No Large-scale
scripting developing an parallel
extensible compiler molecular
to automate the dynamics
integration of simulations

compiled code with
scripting language

interpreters
[96] Automating Software integration- Solution: use of Yes Developing
scientific managing different workflow scientific
workflow scientific activities management systems workflow
manageme
nt
system for
collecting,
analyzing,
e and
§. managing
° data
2 produced
£ by sensors
§ and other
- instruments
[94] Proposing and Assembling scientific Yes Parallel
characterizing code into an executable computatio
workflow system n over data
systems _ sets
{131] | Using pythonin Managing huge amount | Solution: addressing | No Large-scale
SS development of data- dealing with implementation physics
frequent software problems by using application
changes Python
[109] | Problem solving Difficulty of making Solution: using No General
environments 53 physical simulations problem solving
§- 2 reliable environments
o

60

[105] | Developing Observation: highly No Automotiv
software for optimized code e software
automotive makes reuse and developme
industry maintenance quite nt

hard

Tablel12: Summary of the papers discussing implementation issues

In the following sections more details on the challenges, solution and other
observations concerning the implementation of SES are presented.
Challenges

The implementation phase of SES development is also challenging as certain
types of risks can be identified in this stage according to Sanders and Kelly [77]. The
authors have identified three types of risks related to code which makes testing more
difficult. The first one is risk to correctness and is mainly concerned with the accuracy of
the calculations, which is a very critical quality factor. The second one is the risk from
poor code documentation, which was identified to be very common in ESS development.
The last one is risk to verification meaning that we need to ensure that the code solves the
models or the desired equations in a right way. This last risk is a major problem as the
scientists usually do not know how to test their code or they are even unaware of the need
for that.

Also the problem of language interoperability is an issue that happens when the
developer wants to merge the core of existing scientific software with the software tools
which are mostly written in high level languages such as C++, Java or C# [106].

In a paper by Jiao et al. [111], different challenges of implementing a large-scale
numeric software called Roccom for multi-physics simulations were mentioned. Issues
such as concurrent development of different modules, programming language

interoperability, complexity of coupling schemes, check-pointing and plug-and-play

61
capability are discussed and then object-oriented design and architecture of the system is
presented.

Guyer et al. [122] in their paper described the weaknesses and performance
limitations of software libraries such as not being able to use the library implementation,
which suites the needs of a particular client. On the other hand, making the library
generalizable reduces its efficiency.

Kenny et al. in [98] described the challenge of implementing and adopting
uniform interfaces in component-based architecture to enable interchangeability and
interoperability among different packages. They mentioned “managing software
dependencies and build systems” as another challenge of large-scale systems.

Possible solutions

Some tools and packages have already been developed to resolve the challenges
of language interoperability, e.g., Chasm [106] and CLI [133], but still there exists room
for further investigations and studies in this area.

Guyer et al. in their paper [122], explained how, by using “a simple declarative
annotation language that describes certain aspects of a library’s implementation” the
libraries can be used in an optimized way.

Kenny et al. in [98], addressed the issue of managing software dependencies by
building a generic package, which enclosed uniform interfaces and by creating a library
which had the glue code to access the‘ interfaces in the supported programming
languages.

The use of workflow systems in order to support the scientist’s work and address

the challenges of developing SES were discussed in some papers [94, 96]. Vidger [96]

62
defined a workflow system as “commonly used, well-defined sequences of data
manipulation procedures, which involved activities such as numeric transformations,
format changes, analysis, and file management”. Woollard et al. [94] proposed the use of
workflow environments for a key activity termed “orchestration” which is explained as
“assembling scientific code into an executable system with which to experiment”. In their
paper they also discussed the characterization of workflow systems as used during
discovery, production and distribution of science. Vidger et al. [96] discussed their
experience of automating a workflow management system and described its benefits for
supporting their software such as ease of use, management of their activities and
integration of their software tools.

Problem solving environments (PSE) was discussed by Houstis et al. [109]. They
defined PSE as “a computer system that provides all the computational facilities
necessary to solve a target class of problems” to address some difficulties of
computational science such as the difficulty of physical simulation, high cost and time to
develop the software, increase the availability of SES components and reliability of
simulations.

Other observations

Beazley et al. [131] in their paper described their experience of using Python for
developing a large-scale application for parallel processing systems. They identified
several problems that could be addressed by using Python. The first problem occurred as
their simulations usually generate huge amount of data which needed to be analyzed. To
perform such analysis on user’s workstation or to buy everyone their own personal

desktop supercomputer didn’t seem feasible. The second challenge emerged as they were

63
required to make constant changes to the application code (written in C), which they
found to be very tedious with low flexibility. -

Beazley in his paper [130] discussed developing an extensible compiler to
automate the integration of compiled code with scripting language interpreters.
Integrating compiled code with an interpreter is very common challenge when using
scripting languages.

In the automotive industry, a huge amount of code is still written by hand [105].
There are some tools for generating code, though those tools are not efficient enough to
produce optimal code. On the other hand “highly optimized code makes reuse and
maintenance quite hard” as stated by Broy [105].

According to Tang’s thesis [26], in terms of coding standards, it was concluded
that industry is much more careful than academia with respect to implementation
standards. 31%, 66% and 69% of the respondents reported the use of specific tools in
code generating, program debugging and version control.

Amold et al. [123] in their paper has described their proposed SCAI (Scientific
Computing Application Infrastructure). This infrastructure provides the user (novice
non-computer scientists) with an easy programming model and API as well as
incorporation of different types of computational modules. Also it supports different
granularities of computational modules. Module complexities are hidden while they are
easily accessible. Scripting is supported to let the user combine modules. The
infrastructure also support different languages and keeps the performance optimized.

Dall’Osso [110] in his papers discussed the advantages of using CASs (Computer

Algebra Systems) in automatically generating programs. The purpose of these systems

64

is to enable the people who are just familiar with the physics of the problem to write code

without being involved with numerical algorithms. The CAS approach supports

incremental development and thus the problem formulation can be improved after the

correctness of the current version is verified. Also if a change occurs and the program

needs to be updated, just the specifications from which the program is created needs to be

updated.

3.6.2.4 RQ 2.4: What are the challenges and solutions in testing scientific software?

We had 11 papers presenting the issues related to testing SES, including one

expert view, two case study, two surveys, one experiment and five concept

implementations. Table 13 summarizes the information related to these papers.

Ref Paper’s © Challenges Solutions/Observations | Specific | Context/
main focus g o to SES Domain
@ a
-
>
=]
[78] Dealing with - Lack of test oracles Yes A mixture
risk - of
E - Complexity of engineerin
2 functionality verification g and
scientific
- Complexity of disciplines
[23] | Identification software validation Yes High
of the steps > performan
andtoolsin | 3 ce
developing . computing
high- <
performance ©
software
(33] Improving Yes General
SS IS
development § -2
m
[971 Modeling the | .., Manual selection of Solution: a model to No
input space g enough test cases capture the dependencies Multiphys
for testing o among the input space ics
Ss for automated test simulation

generation

65

[76] Proposing Dealing with Tolerance No General
mutation problem
sensitivity
testing for
testing SES
[25] Presenting a Testing continuous No General
methodology values
for
development
of the
requirements
for general
purpose
scientific
computing =
software £
[75] | Testing SS & Large number of Observation: small No General
] required test cases number of well-chosen
S test cases may reveal a
high percentage of code
faults
[85] | Automated Verification and No Image
verification validation of medical segmentat
and image segmentation ion
validation software
technique for
image
segmentation
[84] Proposing The difficulty of Solution: mutation Yes General
the use of detecting silent faults sensitivity testing
code (i.e. code faults, not (reducing error tolerance
mutation for scientific calculation is much more effective
testing SS inaccuracy) than running more tests)
{50} Surveying Observation: separation | No General
how . of software bugs from
scientists E model errors are not
develop and > addressed yet by
use SS software testing
community
[128] | Investigating | Observation; SES code Yes Seismic
errorsinSS | g is not as accurate as data
' 5 expected Processin
53 g
w

Table 13: Summary of the papers discussing testing issues

In the following sections more details on the challenges, solution and other

observations concerning the testing in SES are presented.

Challenges

66

Testing scientific software in practice is a critical task because it is a two-fold
problem. Firstly, “doing the right thing” or validation of what is really needed to be done
is not an easy task, according to Segal and Morris [33], for the software engineer who is
not as knowledgeable as the domain expert. Secondly, similar to any other software
application, the need to test for “doing things right” or verification of the software
remains another challenge in testing SES. This issue as a whole is not well addressed by
scientists as is discussed by Sanders et al. [78]: “If the software’s purpose shifts away
from just showing the theory’s viability, risk shifts to the implementation. At this point,
testing must assess the implementation, not the theory. Most scientists miss this shift“.

In the cases, where the entire purpose of developing the software is to solve a
problem that does not currently have a solution, the validation of the end product is very
complex, if not impossible, as stated by Carver etal. [23].

Segal and Morris [33] also stated that the lack of “test oracle (expected output)” is
a main factor that makes testing SES difficult in many domains. Most of the time, valid
data against which the output of the software can Be compared does not exists and it is
very hard to build a rigorous test oracle. This will cause a challenge called “tolerance
problem” as reported by Hook and Kelly in [76], which is mainly the result of having
uncertain oracles and other errors such as rounding error [83] caused by floating point
representation.

As reported by Smith in [25], the fact that some of scientific applications use
continuous values in input and calculation further adds to the complexity in the validation
of these systems. This is since success in one test case does not imply success in another

test case containing nearby values, since that nearby value may be a boundary value in

67
the defined scope of the variable under test or a singular value which makes one equation
undefined or cause a division by zero at some point.

As reported by Vilkomir et al. [97], in most simulation software such as
multiphysics, the huge number of input values and parameters make the manual selection
of sufficient test cases very complex.

Another major testing-related challenge, reported in [75] by Hook and Kelly, is
the large number of test cases required when following any standard software testing
technique described in the literature, e.g., category-partitioning, or code coverage-based
testing.

Frounchi et al. [85] have discussed the challenge of verification and validation of
medical image segmentation, which is usually performed manually by an expert. In this
verification and validation process, if the result is not satisfactory, the segmentation
algorithm needs to be revised and again the outcome should be evaluated by the expert in
an iterative manner.

Possible solutions

Hook, in his thesis [84], proposed employing “mutation sensitivity testing” to
resolve the challenge of detecting “silent faults” in scientific code, i.e. code faults, not
scientific calculation inaccuracy. In this method, the pass/fail criterion (i.e., test oracle) is
not based on the equality of the expected and actual outcomes (often, outputs). Rather,
the pass/fail criterion is based on the mutation sensitivity of each test case. This way, the

traditional mutation testing can be used as a tool for computational software testing.

68

To tackle the issue of manual selection of enough test cases, Vilkomir et al. [97]
proposed a model which captures the dependencies among the input space and then test
cases can be generated automatically from the model.

Other observations

Initial research results by Hook and Kelly [75] suggest that a small number of
well-chosen test cases may reveal a high percentage of code faults in scientific software
and allow scientists to increase their confidence.

More recently, there have been further developments in the area of testing SES.
For example, a testing process model for scientific software by Hook and Kelly was
presented in [75]. The model consists of three different levels of activities each of which
address a main need in testing. The first level assesses whether the software can be used
by scientists or engineers in order to get their work done. This level is called “scientific
validation”. The second level which is called “algorithm verification” which assesses the
relevance and the strength of the methods and approaches used to solve the problem of
scientists and engineers. The third level or the “code scrutinization” tries to detect code
faults and other problems that occur while using computer languages.

Hannay et al. reported in [50] that scientific software testing raises issues that
have not yet been addressed sufficiently by the software testing community. Issues such
as separating software bugs from model errors and approximation errors or not having a
certain test oracle available are the issues that can not be easily addresses just by referring
to common software testing practices and approaches.

In [128] Hatton reported the details of two experiments conducted to measure the

accuracy of SES code. The first experiment aimed at measure the consistency of millions

69

lines of code written in C and Fortran. The second aimed at measuring the level of
dynamic disagreement between different implementations of the same algorithms
working with the same input data and the same parametérs. As a result they found out
that code is not as accurate as expected.

We also experienced the same challenges as reported in the literature. Our
experience in our ongoing optimization software development project for oil pipelines’
pump operation [132], again provides empirical evidence on the issues of testing SES. As
part of the project, we are building an optimization algorithm and tool (details in [134])
which takes as input the pipelines information (e.g., topography, pump settings, etc.) and
provides as output an optimal operational regime (configuration) for pump speeds which
would deliver the contracted volume of oil product(s) while minimizing the dollar cost of
electricity used to pump the product(s). The back-end of this optimization tool is
developed using a commercial optimization solver, called LINDO [135], and a .Net-
based front-end (GUI) is utilized.

Validating the outputs generated by this optimization algorithm and tool and
whether they are actually optimal is not trivial. One option is the real-world log data
however it is almost certain that real-world settings were not optimal. As another option,
we are planning to develop another optimization tool based on other optimization

techniques (e.g., genetic algorithms).

70

3.6.2.5 RQ 2.5: What are the challenges and solutions in maintenance stage of scientific
software?

We found six papers mentioning the issue related to the maintenance of SES,

including two surveys, two concept implementations, one experience report and one

expert view. Table 14 summarizes the information presented in these papers.

Ref Paper’s ° Challenges Solutions/Observations | Specific Context/
main focus e To SES Domain
s 4
-
2
[50] | Surveying Ignoring Observation: No General
how scientists maintenance while | maintenance of SES is
develop and - developing moderately important
use SS g
[26] | Developing & Observation: the lifetime | No General
scientific and of typical SES is long
computing
software
[120] | Integrating a Dealing with fast Solution: defining No Biology
technological evolving domains different iterations in
and design software development
approach to
support SS
evolution ;
[99] | Introducing a E) Addressing the No High-
tool to E‘ issues of component performance
perform rapid .a glue code scientific
component] computing
prototyping g
while ©
maintaining
robust
software
engineering
practices
[131] | Using python a Dealing with the No Large-scale
in SS g | situation where physics
development 5 | different users application
S | modified their own
= copy of the software
[105] | Developing Long-term No Automotive
software for + .} maintenance is software
automotive § ? required development
industry W

Table 14: Summary of the papers discussing maintenance issues

71

In the following sections more details on the challenges, solution and other
observations concerning the maintenance in SES are presented.

Challenges

One of the challenges of maintaining scientific and engineering code emerges
from the fact that the focus in most of SES developments is primarily on developing
working software in shortest possible time. This way, most of the software engineering
practices, which came to existence to help manage the complexity of maintaining SES, is
usually ignored as reported in the survey by Hannay et al. [50].

Allan et al. in their paper [99] discussed the difficulty of maintenance even when
small amount of code is needed to be added to reusable components and libraries.
Addressing the issue of component glue code and software build process is reported by
the authors to be tedious and error-prone.

Beazley et al. [131] in their paper described the challenge of development and
maintenance of their software. They were a small group of people using the application,
thus “different users had their own private copies of the software that had been modified
in some manner” and that led to a “maintenance nightmare that made it almost impossible
to update the software or apply bug-fixes in a consistent manner”.

Long term maintenance is mentioned as a challenge in software engineering for
automotive industry as “the cars are supposed to be in operation over more than two or
three decades” [105].

Possible solutions
In general, the issues of software evolution are addressed by defining iterations of

software development or maintenance cycles as suggested by Letondal and Zdun in

72

[120], but this is not sufficient to resolve the issue of having fast evolving domains,
which will result in the need for fast evolving software.
Other observations

According to the survey by Tang [26], the lifetime of typical SES is long as just
4% of the software were reported to have lifetime shorter than one year. 70% of SES
software is planned to be used for more than 6 years and 22% has a lifetime of more than
20 years. Also based on a recent survey by Hanney et al. [SO], the importance of
scientific software maintenance is ranked moderately important by the scientists who
participated in the survey.

SES maintenance is the phase which has not gained much attention from
researchers (the number of publications focusing on this phase is noticeably low),
regardless of its undeniable importance.

3.6.2.6 RQ 2.6: What are the challenges and solutions in cooperation and human-related
factors of scientific software projects?

In our pool of papers, seven papers reported the issues regarding the cooperation
and human-related factors in SES development including one experience report, two filed
studies, one concept implementation, one expert view and one survey, as summarized in
Table 15. In the following sections more details on the challenges, solution and other
observations concerning the cooperation and human-related issues in SES development
are presented.

Challenges
SES developers come from different disciplines in science and engineering such

as physics, biology applied math, civil engineering and computer science. The “large

73

variability in specialized backgrounds makes collaborative software development

difficult” as stated by Bartlett [87].

Ref | Paper’s main | Challenges Solutions/ Specific Context/
focus 2 Observations to SES Domain
3
&
[87] Proposing Collaboration among No General
different ‘é various disciplines is
integration © | problematic
strategies for 8
computational ,§
science and g
engineering 5
software
[81] Culture and Communication issues No Biology
cooperation between management
problems in SS and developers
development
[80]] Challenges of & | User engagement in No Software
software g design and engineers
engineers 2 | development developing
3 software
for space
scientists
and
biologists
[114] | Managing Managing Solution: Following No General
individualist g- programmers who management policies
programmer = | prefer to develop in
§ | isolation
Q
3] Identification Observation: Yes General
of the gap developers can be
between classified under 3
software groups: industrial
engineers and E developers, scientific
scientists > and engineering
©
g researchers and students
[5] Identification 5 Observation: No General
of problematic developers need to be
issues in trained to successfully
scientific employ SE
computing methodologies
[50] | Surveying how Observation: the lack | No General
scientists Y of formal training is
develop and g very common
use SS Z

Table 15: Summary of the papers discussing cooperation and human-related issues

74

In a field study [81], Segal has identified communication issues between the
management staff and developers. These issues become problematic particularly because
of the interference of the managers in technical issues. In one industrial setting, Segal
[81] reported that the management board was expected to negotiate, prioritize and make
final decisions about the incomplete and ambiguous requirements, but they failed to do so
properly. The developers often interpret such a failure as interference in technical issues
without any noticeable success in resolving them. On the other hand, the developers often
fail to C(;llaborate with the lab scientists because of not being managed properly from a
higher practical level.

The challenge of user engagement in design and development of SES considering
the fact that the majority of scientific software users are scientists is important to tackle
stated by Segal in [80]. The reason is quite obvious: the lack of software engineering
knowledge about the problem and the problem domain.

Possible solutions

Hovendon et al. [114] recommended that in terms of managing and directing the
project to the right path for building high quality products, the management policies are
of great importance specially to harmonize t.he individual programmers toward the same
goal.

Other observations

Kelly in her paper [3] divided the scientific developers into three major groups:
(1) the industrial developers who are engaged with applications related to their domain of
expertise, (2) scientific researchers and (3) students who will be identified as one of the

two other mentioned groups based on their choice of career. Each of these three groups

75
have their own approach toward application development, but all of them need to be
properly aware and academically trained in order for employing software engineering
methodologies to experience successful development practices as Wilson stated in [5].

According to the survey by Erskine et al. [50], the lack of formal training is very
common and the usual training that scientists might experience is offered by the .
computer science department, which is mostly domain-independent and general as
reported by Kelly in [3].

3.6.3 RQ 3- What are the best practices in SES development?

Because of being very dependent to the specific characteristics of a particular
discipline for which the software is being developed, it is very difficult to propose a
unique and universal framework or methodology which can well be applicable to SES
development in all domains. However we have found several practices suggested by
researchers and experts who could efficiently develop quality products. These practices

are grouped and tabulated in Table 16.

Best Practices Context/ Ref
Domain
Requirements Having a user and system requirement document | General [51]

to specify the functional, performance and the
interface requirements of the sofiware

Responding to immediate emerging requirements | Scientific workflow | [90]

and needs rather than building a complete management
solution system

development-
Determining the schedules and resource levels Large scale multi- | [129]
based on requirements physics

computational

simulations

Design Having software design documents General [51]

Using design patterns Plasma physics [118]
Using component-based software architecture Quantom chemistry | [98,

- High-performance | 124-
and high-end 127]

76

scientific
computing -
- Designing in a way which fits in the Scientific workflow | [90]
requirements of the scientists management
- Designing to support extensibility and system
customization development
- Designing to meet local needs while making the
product easy to extend to cover more general
needs
Designing the project upfront Biology [103]
Implementation | - Separation of the scientific calculation code General [74]
from the user interface code and the data
- Writing simple code
- Having the code reviewed by other scientists
- Pair programming General [88]
- Creating source-centric documents
Building core capabilities promptly Scientific workflow | [90]
management
system
development
Testing Testing SES validity General - Weather | [29,
forcasting 74]
Writing tests first and running them often (test- General [88]
driven development)
Having a test plan on the development of the General [51]
testing strategy and test case generation
Developing and executing a verification and Large scale multi- | [129]
validation program physics
computational
simulations
Development Being organized in different stages and activities | Large scale multi- | [74,
Process physics 129]
computational
simulations -
General
- Performing continuous process improvement General [88]
- Managing the repositories
- Using checklists for repeated activities
Using configuration management tools General - Weather | [29,
forcasting 88]
Using a formal release plan General 188]
Having a management plan and applying project | General - Biology | [51,
management techniques 103]
Having quality control and assurance plan General - Biology | [51,
: 103]
Listening to customer Weather forcasting | [29]
Documenting the program and the key issues Biology [103]
- Performing scheduling and estimation of Large scale multi- | [129]

77

resources based on code development physics
experience computational
- Identifying the risks simulations
Communication | - Using issue-tracking software General [88]
and Human - Communicating by mailing lists
Aspects - Having highly competent staff Large scale multi- | [129]
- Investing in people with training and support physics
computational
simulations
Deployment - Having the system documentation General [51]
and - Preparing the user manual and installation
Maintenance guide
- Running a web site to provide the users main
contact points for bug reporting and release
developments
- Having a maintenance guide to manage bug
reports, perform regression testing and
redistribute the system
Maintenance with customer focus Large scale multi- | [129]

physics
computational
simulations

Table 16: Best practices in SES development

3.7 Discussions on threats to validity of the results

There are always some sources of threats to the validity of a review, which result

in the inaccuracy of the results. One primary source of inaccuracy, which is called threat

to internal validity, is imprecise data extraction. To prevent this threat, we did our best to

define our research questions as detailed as possible by including sufficient sub-questions

to make sure that we address those questions precisely and with the exact related piece of

information extracted from the primary studies. Also, we have specified the type of

information (evidence) which is needed to address the review questions for each of the

questions. By defining this framework, not only we can avoid biased judgments, but we

can also discuss disagreements in depth with respect to the details which are extracted

from the publications. This approach also prevents the threats to the construct validity

78
(observation validity) of the results, which occurs when the observation method does not
exactly capture what it requires to observe [136].

Threats to the external validity are conditions that limit the generalizability of the
results. In this work we presented possible solutions to particular SES development
challenges besides the best practices as applicable to certain types of the software
systems. Our primary studies include publications covering a variety of domains and
different types of software systems, yet certain conditions as applied to some software
systems might occur, which are not considered in the publications, while proposing the
solutions and practices to address the challenges. This type of inaccuracy, as well as
another type of construct validity, which is called intentional validity (does the constructs
we choose adequately represent what we intend to study? [136]) occurs when the
repository of the publications is not complete and it does not contain all the relevant
publications. We tried to decrease the possfbility of this risk by searching through all the
famous electrical resources and publishers by a comprehensive and precise search string
which well represents the topic of this review. As_ we mostly select top journal papers and
conference proceedings it is possible that we have missed certain relevant information
when only presented in theses and technical reports. Also as we searched for the
publications based on their title, when the title of the primary study does not match with
our search key words, the article can not be found. As mentioned in the corresponding
section, we defined our set of search key words in a way to cover all relevant titles.

3.8 Chapter Summary

In this section we presented our SLR on the role of software engineering in the

development of SES. Developing SES is different from conventional software

79
development practices mostly because its primary aim is to help the scientists and
engineers better understand, analyze and resolve their domain issues and thus is highly
tied with the knowledge and expertise of scientists as the real owners of the software.

For this review we designed a set of important research questions mostly on the
challenges of SES development, extracted the relevant info from primary studies and then
presented the potential solutions and other observations found in the literature. Best
practices as applicable to different problem domains and various projects were also
tabulated and summarised for practitioners.

The next chapter will provide basic information about the case study of
developing engineering software for optimization of pipeline operation. The case study
aims at providing evidence on the challenges and solutions for the development of

engineering software.

80

Chapter Four: Overview of the Oil Pipeline Operation Optimization Software
Development Case Study

In this chapter the overview of the case study we undertook, which was aimed at
developing engineering software for the energy industry is provided. We start by
introducing the main project and the team members in Section 4.1. In Section 4.2, the
case study goals and research questions are presented and discussed, followed by the
main domain terminology in Section 4.3, used to communicate with the domain experts.
A brief description of the optimization problem is offered in Section 4.4 and overview of
the pipeline under study is presented in Section 4.5.

4.1 Project and Team Members

The amount of energy required to operate oil distribution systems is huge. This
energy is in the form of either electrical or fossil fuels, and is an enormous portion of the
total expenses in transportation and distribution companies. The reduction of this energy
is valuable in the sense that it saves a great amount of money for the companies as well as
preserving the environmental cleanness by burning less fossil fuel. The energy reduction
is the result of optimal operation of the oil distribution system. To achieve such optimal
operation, the distribution system needs to be modeled mathematically and then that
model can be optimized using a proper optimization method.

This optimization problem as a part of developing intelligent software solutions
for energy industry along with the opportunity of working with industrial partners
motivated our research group to develop an engineering software application which

provides the oil distribution system operators with optimal operation settings as well as

81

the decision support system to assist them in making proper choices. The system was
planned to be developed for an energy transportation and service provider company
located in Calgary named Pembina [137]. The team members collaborating with each
other in this project include a principle invéstigator, two M.Sc students, a domain expert
and a technical consultant. These roles along with the corresponding expertise are

tabulated in Table 17.

Role Description

Principle investigator | Software engineer and optimization expert (the author’s
advisor)

M. Sc. student Software engineer (the author)

Master student Optimization problem modeling and formulation, with partial
domain expertise

Domain expert Main correspondent in the company, pipeline operation expert

Technical consultant | Optimization and pipeline operation expert

/Post-Doc. Fellow

Table 17: Team member roles and their expertise

4.2 Case Study Research Process

In this section the process of conducting the case study is described based on the
guidelines provided in [138]. We went through three steps for this study: (1) design of the
case study, (2) collection of the evidence, throughout the case study and (3) reporting the
case study findings. Each of these steps will be discussed in the upcoming sub-sections.

4.2.1 Case study design

In the beginning of the case study the plan for conducting the case study should
be designed. Certain elements are required to be defined in the plan [138], such as
objective of the case study, the case which is planned to be studied and research questions

of the study. These elements will be discussed in the following sub-sections.

82
4.2.1.1 Objective of the Case Study

Objective of the case study describes what we expect to achieve out of the study.
This case study, as a part of the major project, which was introduced in the Section 4.1,
aims at developing a software system to provide the optimal operation regime and the
decision support for the user by visualising the optimal pipeline parameters with different
pipeline operation settings. These features are offered by the software we designed and
developed in collaboration with another master student in our research group, who
provided us with the optimization formulation module. The interested reader in the
details of the optimization algorithm and pipeline hydraulics and operational formulations
can refer to [139]. The details of the software we designed and developed to embed the
optimization engine, which provides the user with some decision support features are
given in Chapter 5, 6 and 7. The objective of the case study can be summarized as
“assessment of challenges and lessons learnt in the development of an oil pipeline
operation optimization and decision support software and its overlap with the SLR
findings™.
4.2.1.2 The Case '

The case, describes what is planned to be investigated under the study. This is
referred to as any “contemporary phenomenon in its real-life context” in [138]. Thus,
here we consider “the development of the optimization software and decision support
system for oil industry” as our case.
4.2.1.3 Research Questions

In parallel with developing the optimization software, we also defined 2 research

questions to be investigated in the case study. The research questions are inspired by the

83
findings of the SLR in different stages of the development and we summarize them as
follows:

¢ Case Study RQI1: What are the particular challenges of developing oil pipeline
operation optimization software?

e Case Study RQ2: How the challenges of developing oil pipeline operation
optimization software can be addressed?

Based on the findings of the SLR, the research questions can be further refined to a set of
hypotheses as summarized below.
Hypotheses based on the Cases Study RQ1:

e HI.1: Gaining domain expertise is time-consuming and difficult for software
engineer, compared to learning the basics of typical non-scientific/non-
engineering domains.

e H1.2: The requirements cannot be decided in early stages of the development as
they evolve throughout the process.

e HI1.3: Test oracles are uncertain, as often there is no prior solution for the problem
at hand.

Hypotheses based on the Cases Study RQ2:

e H2.1: Regular meetings with domain experts are a beneficial practice for
validation of the requirements.

» H2.2: Adopting iterative approach fits the “evolving and emerging requirement”

nature of engineering software.

84

e H2.3: Adopting OO methodology, can pave the way for using design and
architectural patterns besides giving a better management over data and functions.

e H2.4: The challenge of having uncertain oracles can be addressed by employing
another independent method for solving the engineering problem, so that the
similarities between the results achieved from two methods can be investigated to
add more to the validity of the solutions.

4.2.1.4 Data Collection Method

In order to address the research questions described before, we choose to collect
the data based on observations in different stages of developing the software, which is
one of the qualitative methods of data collection in software engineering [140].
According to [138], the benefit of observations is mentioned to be the possibility of
providing a deep understanding of the phenomenon under study.

We followed two approaches in our observations for data collection [138]: (1)
“think aloud” approach, where the subjects are repeatedly reminded to think aloud by
asking questions such as “What is your strategy?” or “What are you thinking to?”.
Subjects in our case are software engineer and domain experts. (2) Observation in
meetings is another approach, where the observation data is generated during the
meetings when participants interact with each other.

4.2.2 Collection of the Evidence

According to the data collection method described in previous section, we
observed and recorded our data in different stages of the development. The evidence
generated through meetings with our industrial partner for learning the domain basics and

requirement elicitation, as well as our own observations of the experience of designing,

85
implementing and testing of the software, was collected. Also the thoughts of another
member of our research group, who was responsible for the development of the
optimization module, was frequently gathered, using “think aloud” approach.

4.2.3 Reporting

In Section 5.8, 6.3 and 7.4, for each stage of application development, we have
summarized our observations regarding the certain challenges of developing this
engineering software besides presenting the solutions and observations we had during the
life cycle of the application.

4.3 Basic Domain Terminology

The objective of the project is to develop software for optimizing pump unit
selection which provides the operator with the optimal operation strategy for all the pump
stations in the pipeline distribution system while maintaining the desired delivery
schedule [139].

In this section we present basic descriptions of the concepts we had in our target
domain. This domain terminology is required for proper understanding of the problem
domain while communicating with domain experts and reading technical documents.
Also it assisted us in the general understanding of the problem and gathering the required
information for this study.

4.3.1 Pipeline Systems

A pipeline network is a system of pipe segments, pumps, values and other related
instruments which are used for delivering fluid or gas products from source points to
designated target points.» A snapshot taken from the Alaska pipeline is shown in Figure

12.

86

Figure 12: Snapshot taken from Alaska pipeline (taken from [141])

Pipelines in this problem are used to receive oil products and deliver it to several
terminals at a predefined schedule that includes target volumes over given time periods.
Typically, storage is available at the initial port and several intermediate locations. The
pipeline scheduler is provided with a set of contractual constraints that define the target
deliveries at various locations. The system is supposed to generate efficient configuration
and operating regimes for the system based on problem objective, which is the reduction
of power expenses.
4.3.2 Pump

Pipeline systems usually are spread along very large distances. As an example we
can refer to the length of the oil pipelines of the largest operator in North America
(Enbridge Inc.) which is over 5,000 km [142]. Thus products may require travelling a
very long distance to reach their certain target point. Factors such as friction between the
product and the pipeline internal surface and differences in altitude result in loss of

primary pressure which was used to pump the products in the pipeline at source points.

87
This pressure shouldrnot fall under a certain threshold, or the product flow rate in the
pipeline will be corrupted. Pumps are used along the pipeline in order to keep the
products moving in pipeline with a reasonable flow rate, in order to meet the contractual
constraints in the right time.

Pumps in this problem are either fixed speed or variable speed centrifugal pumps.
In variable speed pumps the operating speed can be adjusted as required, while in case of
fixed speed pumps, the pump operated with a certain constant speed.

Pump operating characteristics are typically demonstrated by pump curves which
are provided by the pump manufacturer. These curves depict the relationships between
the following parameters [143]:

- Pressure produced by the pump which is called head pressure. Head is measured
by the height of ﬁquid stub. It is basically the difference between pump suction and pump
discharge pressure,

- Flow rate is the amount of liquid passed through the pump in the certain time
unit,

- Speed by which the pump turbine is rotating (rounds per minute),

- Pump Efficiency is the measure of how efficient the input electrical energy is

transformed to output pressure,

88

Fump Munufaoturer: Warten Pump Size & Type: AN-12-12
Chient: Fanitie Ane Co, Job Number: 8518

Fomp Number: PMP-181 » Dimm : 22.8 insh
Case Mumbar: ECM1-1

078, 100
5052 . - . . %0
502 4} b : 00
Efficiency >
96 . . 7 5
H]
- 37838 0 g
- e
2 o
; 314 © o
® £
@ . =
£33 a
251 .2} ©
188.4 . . - e L . . 0
1256 : . 2 11434 B
: 147
1100 B #Y 880.4 Q.
6286 . . ., . . k|
r-lERRry o P
—— Hp ” 988 &
i e s

2000, 5980. $O70. 11900. 14050. 17040, 20030. 23920, 20910. 29900,
Fiow Rate, galimin

Figure 13: Sample pump curve, head vs. flow rate and efficiency vs. flow rate (taken
from [143])

A sample pump curve is shown in Figure 13. It is worth noting that the pump
characteristics are subject to change after being used for a long time and need to be
updated.

4.3.3 Pump Station

Pump Station is a location where one or more pumps are placed. Pumps typically
are connected serially or in a parallel fashion. There exist cases where the connection
between pumps in the system is even more complex with some of the pumps connected
parallel and others serially. Every pump station can have multiple inlets and outlets. A

snapshot taken from a pump station which has four pumps is shown in Figure 14.

89

Figure 14: A pump station with four pumps (photo by Sergei Grits [144])
4.3.4 Control Valves '
In order to balance the pressure or flow rates in specific points of the pipeline,
control valves are used to maintain the desired condition at those points. Valves are

mostly placed in the positions where the pressure needs to be reduced. A snapshot of two

control valves, taken from an oil pipeline is shown in Figure 15.

Figure 15: Oil pipeline control valves (adapted from [145])
4.3.5 Power Contract and Power Rate
Power Suppliers are companies providing electrical or other kind of power for the

pipeline system. Every Power Supplier supplies electricity for one or more pump stations,

90

while one pump station is usually supported by one power supplier. Power cost is
negotiated with every power supplier and the final agreement is signed in power contracts
for a certain period of time.

Power contracts consist of various cost rates and their thresholds that are used fo
calculate the power consumption cost for running each pump. When a threshold for the
first cost rate is reached, the second cost rate is applied until the second threshold is
reached and so on. Additionally, power contracts have their start and end dates which
define the period in which the contract is valid. Generally the power contracts can be
more complex by having different cost rates within a day, week or month.

In our optimization problem, we considered one threshold for electricity cost

rates. Two sample electricity cost rates of this type are shown in Figure 16.

14
=
2
3z
£ 10
@
A
% 8
; 6 Electricity ratetype 1
8 w= w Electricity rate type 2

4
£
T 2
t
L
w o

(1} 100 200 300 400 500 600 700 800
Consumption power (kW)

Figure 16: Two sample types of electricity cost rates

4.4 Overview of the Optimization Module

The aim of optimization in this project was to find the optimal operation setting of

the oil pipeline. This is known to be a complicated problem because of having huge

. 91
number of integer variables and the other hydraulics non-linearities involved. On the
other hand, as the technique was expected to be applied to a real working system, it was
required to be a reliable and efficient solution. By reliable we mean the solution should
be able to find the closest optimal values to the global optimum and by efficient we mean
the execution time of the algorithm should be reasonable to operators, to make the system
usable for them. Main decision variables in this problem formulation include:

e the status of the pumps (which means if they are in operation or not),
o the system flow rate,

e added pressure by each pump unit in each pump station,

e power cost rates and thresholds for each station,

In order to address the specific requirements of the system, as mentioned briefly
above, Mixed-Integer Linear Programming (MILP) was seclected to be used as
optimization method in this problem. The power of MILP lies in the fact that it
guarantees the convergence to the global optimum in finite number of iterations while
providing aflexible and accurate modeling framework [146].

The optimization module includes a commercial optimization solver, and the
optimization formulation file. As mentioned before, the optimization formulation file was
designed and developed by another master student working in our research group. He
developed the formulation file by first defining a formulation framework in which the
decision variables, sets and fixed parameters were identified after gaining the required
domain expertise. This domain expertise was acquired by studying the pipeline networks
theoretical basics and through meetings with our industrial partner. Then the relationships

among the decision variables, fixed parameters and sets were identified and the

92
constraints were taken into account in order to obtain the formulation for the entire
pipeline.

He evaluated the meetings with the industrial partner helpful in understanding the
case study system basics. Collaborating with domain experts also was beneficial for the
correctness of the formulation file and the verification of the optimization resuits.

The main challenge he faced was the confidentiality of the pipeline network data
and software usage which resulted in some extra works to hide that information. Also the
experts were sometimes tardy in responding back to the requests which resulted in
significant delays.

Interested reader can refer to his thesis [139] for more details on the decision
variables, objective function, optimization formulation logic and the optimization
technique used in this problem.

4.5 Pembina Pipeline

In this research project [132], we made an agreement with Pembina engineers to
just considered the portion of Pembina pipeline starting from S1 station in Alberta and
ending in Kamloops in British Colombia. This portion in total includes six pump stations,
one of which is not currently in operation. Figure 17 shows the whole pipeline network

under the operation of Pembina.

93

v Correnntions “pres

o Paared Posines
Frpafies by (then,

Q s emna

O ot Deveioprss

Q tumah Conplen

Figure 17: Geographical spread of Pembina pipeline [137]
The length of the pipeline in this study reaches to around eight hundred

kilometres with two source nodes and two delivery points as shown in Figure 18.

$1 §2 §3 54 85 6

Figure 18: Schematic view of Pembina pipeline

To control the flow rate and pressure of certain points, around ninety valves are
placed on the pipeline, twenty three of which are being used and monitored frequently.

The name list, type and number of the pumps in each pump station are shown in Table

18.

94
In order to sketch the pipeline elements on Google Earth, we needed the
geographical profile of the pipeline portion under study. This was achieved from the map
of the pipeline provided by Pembina. For the sake of the confidentiality of the data
provided by the company, we do not disclose the geographical profile of the pipeline

elements in this thesis.

Pump station Type # of pumps
S1 Variable speed 2
S2 Variable speed 2
S3 Fixed speed 1
S4 Fixed speed 2
S5 Variable speed 3
S6 Fixed speed 2

Table 18: Pump stations in Pembina pipeline covered in this project

4.6 Chapter Summary

This chapter presented the information related to the major research project in our
research group on the development of software solutions for optimizing the pipeline
operation. The case study described in this thesis is a part of that major project. The goal
of this study is the development of the engineering software application to provide the
optimal operation regime for the operators as well as the possibility to visually inspect the
pipeline important variables such as total power consumption, power cost for each of the
stations and the pump speeds in variable speed pump stations.

Main domain terminology used to communicate with domain experts and to
understand the system are elaborated briefly. Elements such as valves, pumps, and pump
stations are the main components of each pipeline system which are represented in the
optimization problem formulation by certain variables. The optimization problem, which

is expected to be solved by the commercial solver embedded in the application, is also

95
briefly described in this chapter. Our industrial partner and the pipeline network under
study were presented.

Next chapter will discuss the requirements of the case study, besides elaborating

the analysis and design of the application.

96

Chapter Five: Requirement Specification, Analysis and Design

This chapter summarizes our engineering software requirements and provides
some of the important detailed documents used in the analysis and design of the system.
In Section 5.1 the requirements of the system are introduced. Section 5.2 briefly presents
the object-oriented design methodology employed. Actors, external systems and storage
are presented in Section 5.3. Section 5.4 presents the use-case diagram, followed by
activity diagrams in Section 5.5, architecture in Section 5.6 and class diagram in Section
5.7. The discussion of the experiences in this step of the development regarding the case
study research questions is presented in Section 5.8, which concludes this Chapter.

5.1 System requirements

In this section we briefly present the requirements of the system.

5.1.1 Functional Requirements

The optimization software is expected to provide several functionalities for the
users who are mostly pipeline operators. First, the user should be able to login to the
system. The user should be able to launch Google earth, load his/her target pipeline in
Google earth and easily navigate and browse pipeline, pump stations, valves and other
belongings of the pipeline and read the information attached to these objects as
specification boxes easily.

The user should also be able to run the optimization engine, open a new
optimization formulation file or modify the existing file. The optimized values after
running the optimization engine on the target optimization file should then create

comparison charts for each station and also for the whole pipeline in order to give the

97
user the possibility of visually studying the results and comparing the suggested optimal
values with the available historical data of the pipeline system. By optimization engine or
optimization solver in this project we mean Lindo [147].

5.1.2 Non-functional Requirements

As we mentioned before ,the system is being developed for our industrial partner,
Pembina [137], which is an energy transportation and service provider company located
in Calgary. Obviously the system is expected to be user friendly and easily learnable. The
system is expected to be secure as it contains the operation data related to the company.

The system should support the modifications (modifiability), replacements and
extensions (extensibility) that might occur to Pembina pipeline, such as pump
replacements, power contract renewal with updated power cost rates. It also should be
easily customized (customizability) for other companies, in the way that they can load
their desired pipeline and get the corresponding visual and optimal data for that pipeline
from the system. As a result, the code should be easily maintained (maintainability).

Testability should also be considered during the system design, as we require
performing automated testing on the system to assure its correct functionality.

5.2 Object-Oriented Analysis and Design

We have adopted object oriented analysis and design methodology to benefit from
its advantages, such as improved maintainability and modifiability as mentioned in
Chapter 3. There we discussed in more details about the challenges faced in the design of
SES and object oriented methodology, which was mentioned as a potential solution to
address the design challenges as well as leading to a robust, easy to maintain system.

Compared to procedural design which is the most common practice among non-software

98
engineers; object oriented methodology is a proper technique to manage the data and
functionalities in complex SES.

5.3 Actors, External Systems and Storage
In the following sub sections, we discuss the elements that interact with the
system. The list of these elements, which includes actor, external systems and storage

along with their descriptions are summarized in the Table 19.

Name Role Short Description
Operator Actor The user who works with the application
Optimization External system | The Lindo optimization engine (solver) which runs the
_Engine optimization file and returns the optimized values
Google Earth External system | GoogleEarth application
MS Excel Microsoft Excel
Text File Storage File containing extracted target optimal values from
Lindo output file
XML file Storage File containing the pipeline specifications
Optimization Storage File containing the pipeline network formulation
formulation file

Table 19: System list of actors and short definitions

5.3.1 Operator

As mentioned above pipeline operators are the main users of the system. They
start by logging in to the system and then browsing the network, defining/modifying
system information, viewing system logs, viewing station’s graphical views and other
provided information on Google Earth interface, run optimization engine and have the
possibility to view different optimization charts.
5.3.2 Optimization Engine

In order to optimize the pipeline operation cost, we used a commercial

optimization solver named Lindo [147] which is responsible for getting the latest pipeline

99

network information, formulated in a file, from the system and find optimal values based

on which the pipeline operation will be optimized.

Lindo (independent from our application) provides the user with an environment,

called LINGO, which integrates an editor for the optimization problem formulation and

menu options for parameter setting and running the solver. A snapshot of LINGO is

shown in Figure 19. In the figure, the LINGO environment, a sample model, which is in

general the formulation of the problem to be optimized, the report produced after running

the solver and the LINGO solver status are shown.

S PO T 00 Sulution Hepost §einbiong

I_KIIID;DS H

$ration ;

Panm
INZZETS

DaTa:

Contract = 3700 :
B_Tayior2 = 0 :

H_Piliowz =
B_Bcleod =

#_Prince2 = 0 ;

RS 3 bk R
H_Australian2 » 0 ;

H_Austzaliss) = 0

453 g

Y Temtar - oA

<

B _Taylor_fuc, H_Taylort
u_¥iliow Sue; H_¥iliow:
H_%cleod_Suc H_RclLeod,
H_Prince_ Suc # _Princel
M_Australian_Suc, E_Australtani,
H_LacLa_Suc. B LacLal

X Selution Repnrt Penbina i

_§ ® bound:
‘f tiicies:

solver steps:
lver iterations:

Variablie
RO

G
CONTRACT

How

[t
£

-
B

n
E_max
P_Q_TAYLOR1
P_H_TAYLORL
P_ICPT_TAYLOR1

P_ICPT_TAYLORZ
»_TRRESH_TATLOR
BS_TAYLOR
S_1000

Figure 19: LINGO environment showing the optimization problem formulation,

B _Taylor2,
H_willowz,

H_Prince2,
B_Austrelienz,
H_LaclLez,

1364.873
1364.673

0.1676081Z~11
7

4506

Value Reduced Cost
850,0000 0.000000
$.810000 0.000000
3700.000 0.000000

0.1830000Z-01 0.000000

-1.192100 0.000000
120,0000 0.600000
200.0000 0.000000
200.0000 0.000000
1000. 000 0.000000
2.474000 0.000000

0.4850000 0.000000

-341.7500 0.000000
2.474000 0.000000

0.4850000 0.000000

-341.7500 0.000000
400.0000 0.000000
480.9700 0.000000
473.3500

0.000000

H_Australian3,
?_LacLal,

B_Taylori,
B_Willowi,

B_Taylorz,
B_uillows,

B_Princez,
B_AustralienZ, B

Solves Staus Vaigbles -
Modei Claes p Tout 3173
Norinaar [
Stats Glabal Opt | lesgeee LT
Obective 1364.97 | Comenns
Inkoackly 1.67688@-012 Tt 2903
. © Novines: 0
o 06
Extended Solver Stk . Tott 8549
Soiver Type Boanag } Newww 2
Best 055 1364.87 -Gonmator Mewowy Used K}
© ObiBound 1364.67 | 724
o 4 Elpoed Rurting (xrmwnss)
At o 00:00:07
Undateinservat 7 | o |
M |

optimal solutions and the solver status

In20,Col15 " 6:Ddpm

Our application is expected to call the solver which takes the formulation file

saved in .1g4 format (the file format for Lindo models) and optimized the target objective

100
function using MILP (Mixed Integer Linear Programming). The resulting optimal values
are then extracted from the generated output file and saved in text files to be used later
for chart creation.

5.3.3 Google Earth

The system should be able to interact with Google Earth in order to provide the
user with the possibility of browsing different valves and stations graphically. A snapshot
of Google Earth application, demonstrating Pembina pipeline is shown in Figure 20.

2 Google Larth
File Edt View Tools Add Hep
v Seaich

Fiy Yo : Findmshessos"f; Directions |

Fly to #.g., Hotsls near K

i' Places
: Q My Places
2 (21 €3 Temporary Places
[F)4ay pembina_pipetine. ki

v Layess Earthl;aiery
% E1%2 primary Database
[Y1 P Borders and Labels
O places
% Photos
- [J == Roads
L3 30 uidngs
(I % street view

Figure 20: Snapshot of Google Earth application
Google Earth employs a specific textual data file format, called KML (Keyhole
Markup Language) to represent different schematics and icons on its graphical interface.

KML is an XML notation for representing geographic annotation and visualization

101

within internet-based two-dimensional maps and three-dimensional Earth browsers [148].

A small portion of a sample KML file is shown in Figure 21.

<?xml version="1.0" encoding="UTF-8"7>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document> :
<Placemark>

<name>Pembina Pipeline</name>

<Style>

<LineStyle>
<color>7f00ff00</color>
<width>10</width>
</LineStyle>

</Style>

<LineString>
<extrude>1</extrude>
<tessellate>1</tessellate>
<coordinates>
-120.658,56.155,409.9
-120.648,56.145,473.35
-120.648,56.125,443.17
-121.65,55.708,757.73
-121.66,55.687,625.75
-122.203,55.645,641.7
-122.95,55.125,737.92
-122.97,55.125,709.26

Figure 21: Sample KML file showing header information followed by “placemark”

tag and sample coordinates used to demonstrate different stations on GoogleEarth

The information related to the geographical locations of each pipeline element,
i.e. pump station, pump segments and c'ontrol values are saved in these files and each
time the Google Earth starts up, the information automatically loads on its graphical
interface and the user can browse the pipeline. This gives the user a real flavour of where
the pipeline is located on the map and the user also can view the internal information
related to each pump station, such as the number of pumps and their types, as shown in

Figure 22.

http://earth.google.eom/kml/2.2

102

Serial No

poanag

LU |

Directions: T herg - frarm here

Coole
N

Figure 22: S3 station internal information

5.3.4 Text files

The optimization solver produces large amount of information after solving the
optimization problem. Only a small portion of this information is required to be extracted
for further calculations or the creation of charts. The Lindo environment provides the user
with the possibility to redirect their data of interest (among optimal values) into text files;
therefore text files are where we store our target optimal values. After each optimization
run, the content of the text files are replaced with the new optimal values.

In order to be consistent with our optimization data, the historical data taken from
our industrial partner is saved in text files. It is worth mgntioning that we received huge
amount of historical data saved in Excel files from Pembina, where we were required to
identify and extract our data of interest. In some cases further data manipulations, such as

unit conversion or parameter calculations were also required to convert their data into a

103
proper usable format for our application. This historical data was gathered using Pembina
supervisory control and data acquisition (SCADA) system. SCADA systems are used to

control and monitor industrial, infrastructure, or facility-based processes.

5.3.5 XML File

XML files are typically used to transport and store data. Here in this problem,
XML files are used to store the specifications related to the pipeline system, which
mainly includes the name and number of pump stations, the number of pump units in
each pump station, the path of the Lindo formulation file for the pipeline operation
optimization and the path for the KML file containing the geographical profiles of the
pipeline.

In order to load a new pipeline and get the system parameters related to each
pipeline renewed, the pipeline specification which is stored in a certain XML file is
required to be loaded to the system. Thus in order to make the load scenario possible, the
user of the system has to first generate the corresponding XML file. A sample XML file
used in loading a new pipeline in the system is shown in Figure 23.

5.3.6 MS Excel

Ms Excel is used in order to create the charts in this application. The optimization
data as well as data taken from SCADA system which are all saved in text files are
required to be visualized for comparison and decision making purposes. This is done
using the charting feature of Ms Excel because of the high flexibility, support and ease of
use that can be achieved by using Excel charts. The idea of using Excel charts becomes
stronger when one knows that the chart page in Excel sheets can be simply exported to

image files. These image files also can be easily shown in application user interface.

104

<?XML version="1.0" encoding="utf-87>
<pipeline pump_stations="5">
<pump_station id="S1"
pump_no="2"
pump_type="variable"
a="-0.0124"
b="0.4903"
c="806.5363"
const="0.8713"
nominal_speed="2900">
</pump_station>
<pump_station id="S2"
pump_no="2"
pump_type="variable"
a="-0.0022"
b="0.4345"
c="926.9063"
const="5.1234"
nominal_speed="5400">
</pump_station>
<pump_station id="S3"
pump_no="2"
pump_type="fixed">
</pump_station>
<pump_station id="84"
pump_no="3"
pump_type="fixed">
</pump_station>
<kml path="\\Pembin_Pipeline kml"
path_type="relational">
</kml>
<optimization formulation_path="c:\\pembina3.1g4"
path_type="absolute">
</optimization>
</pipeline>
Figure 23: Sample XML file used for loading a new pipeline

We used Microsoft Component Object Model (COM) technology to interact with
Ms Excel from .NET framework. COM is a technology offered for Microsoft Windows-
family of operating systems that enables software components to communicate with each
other [149]. COM is integrated in several applications such as Microsoft Office Family of

products. The .NET Framework provides interoperability with COM, which enables

105
COM-based applications to use .NET components and .NET applications to use COM
components. Employing this technology, we communicated with Ms Excel from our
application in .NET framework, to creat¢ a chart object using the target optimal and
SCADA values imported that chart object to a bitmap image file and then showed the
image of the chart in our application.

5.3.7 Optimization formulation file

As explained in Chapter 4, the pipeline operational characteristics and constraints
are formulated in a script where the solver can finds the mathematical formulation of all
the required elements of the optimization problem, such as decision variables and
objective function and find the optimal values considering the configured constraints and
parameters. The optimization formulation scrip used in this project is shown partially in

Figure 24.

@FOR(Station(s) | s #EQ# 1:

@BIN(B_S11(t)) :

@BIN(B_S12(t)) ;

B8BIN(Te_S1(t)) ;

H_S1 Suc{t) = 1238000/ro/g ;

H_S1_Disch(t) = H_S1 Suc(t) + H_S11(t) + H_S12(t) ;

P_S11(t) = P_Q S11 * (Q_T(t) - Q S11(t)) + P_H S11 * H_S11(t) +
P_Icpt_S11 * B S11(t) ;

P_S12(t) = P_Q S12 * (Q_T(t) - Q S12(t)) + P_H_S12 * H_S12(t) +
P_Icpt_S12 * B _S12(t) ;
H_S11(t) < B_S1l(t) * H_Max

H_S11(t) > B_S11(t) * H min ;

H_S12(t) < B_S12(t) * H Max ;

H_S12(t) > B_S12(t) * H min ;

Q_S11(t) > (1-B_S11(t)) * Q_min ;

Q S11(t) < (1-B_S11(t)) * Q Max ;

Q_S12(t) > (1-B_S12(t)) * Q min ;

Q Sl12(t) < (1-B_S12(t)) * Q Max ;

C_S11(t) = P_L_S1(t) * Rate_L_S1(t) + P_H_S1(t) * Rate_H_Sl(t) ;

P_L_S1(t) + P_H_Sl(t) = P_S1l1(t) + P_S12(t) ;
P_L_S1(t) < P_Thresh_S1 * Te_S1(t) ;

P_H S1(t) > P_Thresh_S1 * (1-Te_S1(t)) ;

P H S1(t) <= 100000 * (1-Te S1(t)) ;:

Figure 24: Sample part of the optimization formulation file [139]

106

5.4 Use-Case Diagram

In previous section, we presented all the actors and systems interacting with our
system and described their key roles in the application. In order to represent the system
requirements, the main functionality of the system, system actors and their relations are
sketched in the use-case diagram. The use case diagram of the system is shown in Figure

25.

PumpOptimisationSystem

Load pipeline

Browse Pipeline

Google
Earth

AN

Control GoogleEarth

XML
File

7
L

0/
A

Operato

View Charts CreateCharts

Run Optimization

Optimization

oo

Modify
Optimization File

Control
Optimization

:

Figure 25: System use-case diagram

107

5.4.1 Use case Specifications

In this section we discuss three of the important use-case specifications of the
system.
5.4.1.1 Load pipeline
Brief description
Operator selects and opens a new XML file which contains the specifications for the new
pipeline and the system extracts the required information from XML file in order to
renew internal parameters related to pipelines and also the path for KML file which
includes the geographical profile of the new pipeline.

Basic Flow of events

1- The operator clicks on the “Load new pipeline” submenu from “File” menu.

2- The system displays the “open dialogue box” for browsing and selecting the XML
file related to new pipeline.

3- The operator selects the specific XML file and click on the “open” button.

4- The system reads the required information from the XML file and renews the
system internal parameters and loads the pipeline schematic on Google Earth
interface accordingly.

Alternative flows

- Invalid XML file

If in step 3, the user selects a wrong file, either not having a standard XML format or not
having all the required information for the system to reload the pipeline related

parameters or not having a valid path to read a KML file, the use case ends with a failure

condition and the system shows the proper error message.

108
- Invalid KML file
If the Google earth does not find the KML file having a standard format, it is not possible
for Google Earth to load the pipeline on its graphical interface. The Interface will remain
blank and the system shows a proper error message.
Preconditions
- The user must be in the application main form (all the modal windows must be close.).
- Google earth is installed on the computer running the application.
Post conditions
- Successful Completion
The user can start browsing the new pipeline.
- Failure Condition
The Google Earth will remain blank. The user can either select and load a new pipeline or
choose to close the Google Earth application and use other features of the system.
Extension points
In step 4, while loading the KML file on Google Earth, the “manage Google Earth” use-
case will be referenced and used in order to load a new instance of Google Earth. Tilis is
required to clear up any previously loaded pipeline on the Google Earth graphical
interface.
5.4.1.2 View charts
Brief description
Operator chooses to view the optimization charts.
Basic Flow of events

1- Operator chooses the “view chart” submenu from “Tool” menu,

109

2- Operator chooses the station name in the “chart” modal window,

3- Operator also chooses the chart type (either operation cost or pumps speed),

4- The system reads the related SCADA and optimization data from
corresponding files,

5- The system passes the data to Ms Excel,

6- The system asks Ms Excel to generate the Excel charts,

7- MS Excel converts the chart to a bitmap image and returns the image path to
the system,

8- The system shows the resulting chart image.
Alternative flows
1-Ms Excel is busy with another application
Ms excel does not respond, therefore the system can not pass the target SCADA and
optimal values to Excel and the charts can not generated. A proper error message is
shown by the system.
Preconditions
- Ms Excel is installed on the computer running the system.
- Files containing SCADA and optimal values should exist in the target directory.
Post conditions
Successful Completion
The user can start viewing different chart types sketched with the SCADA and optimal
values taken from different stations.
Failure Condition

The user can view the last successfully built charts (if any).

110
Extension points
“Create chart” use-case will be referenced and used in order to handle the interactions
between the system and Ms Excel.
5.4.1.3 Run optimization
Brief description
The operator calls Lindo to solve the pipeline formulation file.
Basic Flow of events

1-The operator clicks on the “Run optimization” submenu from “tool” menu.

2- The system displays the modal window for selecting the target optimization file
and running the solver.

3- The operator selects the target optimization file.

4- The system loads the file.

5- The user can modify the optimization file and then click the save button.

6- The system saves the optimization file.

7- The user click on “Run optimization” button.

8- The system calls the solver and gives the target optimization file to the solver
to be optimized. The optimal values (if feasible) are found and saved in text files.
Alternative flows
- Optimization solver is busy with other applications
The system creates a time out error message.

- The formulation file is invalid
A proper error message is generated and shown to the user.

- The optimization problem is not feasible with current variable setting

111

The system waits for a certain amount of time (currently set to 10 seconds based
on the experience) and then checks the output status file and if finds the infeasible status
on that, creates and shows a proper message.
Preconditions
Lindo is installed and registered on the computer running the system.
Post conditions
Successful Completion
The files containing optimal values for each station are updated with the new optimal
values.
Failure Condition
The files containing optimal values for each station are not updated. The user can change
the optimization file variable setting and try to run the optimization solver on the new file
again.
Extension points
The “Manage optimization” use-case will be referenced and used to manage the
interactions between the system and the optimization solver.
5.5 Activity Diagrams

In order to represent the stepwise actions and workflow of the components of the
system, we have used activity diagrams. In this section we present three of the main
activity diagrams of the system use-cases.
5.5.1 Run Optimization

Based on the information presented in the use-case specification of “calling the

optimization solver”, the activity diagram for this use case is shown in Figure 26.

112

Gs-t selects "Optimisation™ submnnD
~ [load naw file] .
g User selects new optimisation file
e
[use current file) [does not need edit)
[need odit]
2/
fi
? peTy '\——)@sor edits optimisation Io)
[does not need edit]
2/
Gystam calls optimisation solver

: \

Ghe solver finds optimal values, updates ﬁleD

Figure 26: Activity diagram for “Run optimization” use-case
As seen in the figure, different steps and conditions of the use case are graphically

represented.

5.5.2 View Charts

The activity diagram for viewing the charts is shown in Figure 27.

@ur opens "View charts”™ WEndovD

g @ur selects statlorD

@sor selects Chart typn)

g Gystem reads optimal and scada da@

Gystems passes

datato MS ExcoD

®

CSystcm shows charD

Gs Excel sketches chaD

—

@3 Excel converts chart to image, returns image path to system l

Figure 27: Activity diagram for “View chart” use-case

5.5.3 Load Pipeline

The activity diagram for loading a new pipeline is shown in Figure 28.

113

114

g Gur selects "Load new pipeline” submonD

@Cr selects Xml ﬂlD

Gystem loads Xml fi@

g @stem renews corresponding informatiorD

(system loads Google Earth with new pipolino)

Figure 28: Activity diagram for “Load pipeline” use-case
5.6 Architecture: MVC

In order for supporting testability, maintainability and separation of logics and
concemns, the MVC pattern was introduced back in 1979 and first implemented in

Smalltalk-80 [150].

115

Design for testability has not gained any attention in scientific software

development according to the primary studies we had in our systematic review. We could

not find any publication in which the testability had been a concern of the SES designers.

Therefore to bring testability into our attention, while we were considering the issues of

design, we have adopted Model-View-Controller (MVC) architectural pattern in our

system in order to better manage different levels of the system.

Class type Class name Description
Controller mainController The controller which manages the main functionality of
the system, such as creating chart, loading a new
pipeline and populating the corresponding network
with the data taken from optimization and SCADA text
files
GEController The controller which manages the system’s interactions
with Google Earth, such as moving in different
directions and zooming in and out
optimizationController | The controller which manages the system’s interactions
with optimization engine, such as running the
optimization solver and opening the optimization editor
View mainForm The main window of the application which contains
. GoogleEarth and menus
chartForm The window for creating and reviewing different charts
optimizationForm The window for editing the optimization formulation
| file parameters
Model Network Class representing a pipeline entity
(Entity) pumpStation Class representing oil pump station entity
Pump Class representing pump entity
GE Class used to represent a Google Earth instance
Lindo Class used to represent a Lindo (optimization solver)
instance
ExcelApp Class used to represent an “Excel application” object

used to create a chart

Table 20: System classes categorization based on MVC architecture

In MVC architecture the system is broken down into three components: model,

view and controller. The model component is the application’s business layer and usually

116
includes the objects that represent the business entities which make up the application
such as pump units and power stations.

The view layer is the application’s user interface and consists of different modal
and modeless windows and other standard GUI elements such as menu, buttons, images,
radio buttons and panels. The choice of having an isolated layer for all the interactions
with the user wil] later help us in the testing graphical user interface of the system.

The controller layer is where all the events, generated by user-interface actions,
such as when the user clicking a button or selecting an item from a drop-down list are
processed by the application. Different elements of the system are shown in Table 20.

5.7 Class Diagram

Class diagram is one of the static structure diagrams that demonstrate the structure
of the system using the classes of the system, their attributes, their methods and the
relationships between the classes [151]. The simplified class diagram of the system is
shown in Figure 29. In this figure classes are color coded for better separation of different
layers of MVC. Forms are coloured in yellow, controllers in grey and entities are
represented in green. Setters and getters (accessor of nétwork, pump and pumpStation

are not shown for the sake of simplicity.

117

Figure 29: Application class diagram

118
5.8 Discussion

In this Chapter, the requirements of the system besides its analysis and design
were described. In response to H1.1 (first hypothesis of the case study first research
question: Gaining domain expertise is time-consuming and difficult for software
engineer, compared to learning the basics of typical non-scientific/non-engineering
domains), besides the findings of the SLR presented in Chapter 3, we also observed that
understanding the problem domain and application requirements is one of the main
challenges in SES development [33]. Principles and practices entangled with scientific
and engineering domains are usually complex and hard to understand for software
engineers, not having any related experience and background. Our experience in the
requirement elicitation of the application confirms that gaining the domain expertise is
tedious and time consuming for us as software engineers, because of the certain
complexities of the pipeline operation.

Regarding H1.2 (second hypothesis of the case study first research question: The
requirements cannot be decided in early stages of the development as they evolve
throughout the process), our experience matches with that of the literature; we observed
that the requirement specifications can not be finalized in early stages of the
development, and this is an ongoing process in the real world as software engineers and
domain experts need to learn how to communicate. Another observation we had was that
most of the time domain experts did not have a clear understanding of how the software
could be integrated with their every day routines and they did not know how it could be

utilized in an efficient way beside their own system.

119
To tackle this issue and in response to H2.1 (first hypothesis of the case study second
research question: Regular meetings with domain experts is a very beneficial practice for
validation of the requirements), as suggested in the literature [63], in our case study,
meetings were organized with the industrial correspondent to frequently verify our
understanding of the pipeline operation principles, documenting the domain concepts and
basics as required and verifying the system requirements.

Object-oriented methodology is not very common in SES community, as the
scientists and engineers do not have the required background to benefit from this
methodology [34]. In our case study in response to H2.3 (third hypothesis of the case
study second research question: Adopting OO methodology, can pave the way for using
design and architectural patterns besides giving a better management over data and
functions), object-oriented technology was adopted in designing the system to build a
robust framework, as suggested in [127], and to better manage and modify different
modules of the application.

Employing design and architectural patterns have shown to provide remarkable
advantages for reusability and maintainability of SES [116]. We used MVC architectural
pattern to bring testability and maintainability to our system, in order to address these
non-functional requirements of the target 'soﬁware. According to the results of SLR,
testability in particular is a factor which is often ignored in SES design. As testing SES is
considered complex and tedious according to literature, we tried to incorporating

testability in system design.

120
5.9 Chapter Summary

This chapter summarises our oil pipeline operation application requirements as
well as providing analysis and design documents used in designing the system. We
adopted object-oriented methodology in this study. System actors, use-case diagram and
some important activity diagrams such as “calling the optimization solver”, “viewing
charts” and “loading a new pipeline” are presented.

We followed MVC architectural pattern in order to support testability besides
better managing levels of our application. Different elements of the system based on
MVC architecture, which include the system entities such as pump stations, controllers
such as optimization controller and the Google Earth controller and application views,
which are different windows of the system are tabulated and described.

The process of application development will be discussed in next Chapter, and the

dependency analysis of the system artefacts will be discussed.

‘ 121

Chapter Six: Development

In this chapter, we present the details on the implementation and development
phase of the pipeline operation application. For our development platform, we used
Visual studio 2008. C# programming language was chosen for implementation,. mostly
because we were proficient in it and our industrial partner preferred it to avoid further
inter-operability issues with their other applications.

We start by elaborating our development process in Section 6.1, which was the
iterative development approach, followed by dependency analysis in Section 6.2, to gain
better understanding about the characteristics and dependencies of the code. This type of
analysis and visualization brings the developer a better understanding of the code and
makes the code maintenance easier and more cost-effective. Section 6.3 provides the
lessons learned and concludes this Chapter.

6.1 Development Process: Iterative Approach

According to the certain characteristics of SES, as mentioned in Chapter 3, we
decided to take an iterative development approach in our oil pipeline application
devélopment. This model is depicted in Figure 30. The process starts with initial
planning for the development, followed by preliminary understanding of the system’s
requirements, analysis and design, feature implementation, deployment, testing and
primary evaluation. Next iterations complement the activities of previous iterations by
adding new features and functionalities, may raise the need for redesign and refactoring.
This gives the developer the opportunity to benefit from what they learned in previous

iterations for improving the development quality.

122

Requirements Analysis and Design

Planning Implementation

Deployment

Evaluation Testing

Figure 30: A model of Iterative development approach [152]

According to the results of our SLR, this approach works well with the nature of
SES, as it gives flexibility to the requirement elicitation and provides the opportunity of
getting iterative feedback from our industrial partner to evaluate the understanding of the
problem, on a regular basis. This evaluation is considered very critical to the
development to avoid misunderstanding of the concepts, as they are not primarily expert
in the pure science they develop the software for.

In this study, as mentioned in Chapter 3, we started by discussing with our
industrial partner to identify the requirements of the system they needed. We faced
challenges in understanding their language, which were settled after discussing the details
over several meetings and learning their specific domain terminologies.

The analysis and design then took place with the appropriate choice of object-
oriented methodology, followed by partial feature implementation and testing of the
system. The system then was evaluated based on our industrial partner’s expectations of

necessary functionalities as stated in the requirements section, besides our own

123
understanding of what might be helpful for them after having several meeting with the
domain experts and investigating similar pipeline operation software. Features were
prioritized roughly based on their importance with principle investigator (advisor of this
thesis) in the beginning of the project and new features were gradually added in the
following iterations. Sometimes it was required to break a complicated feature into
several smaller tasks and then develop each of those smaller tasks during one iteration.
This way the development of such a feature took several iterations before it can be fully
integrated into the system. Manual evaluation and automated testing based on the proper
functionality of the system were held regularly between the author and the principle
investigator in their weekly meetings.

6.2 Dependency Analysis

In this section we briefly present some ideas which help reuse and maintenance of
the application. According to the results of our SLR, the maintenance stage of SES
development has not yet gained enough attention and reusability of the software is often
ignored. The ideas discussed in this section suggest improving the maintenance quality.

In order to understand a piece of code and judge about its quality for re-use
purposes, it is required to smdy what it depends on and also what depends on it [153]. If
the component under study is found to have a large group of dependencies on other
systems or components, then it will potentially change whenever one of those other
systems or components change. Dependency analysis is performed to identify and
understand the existing dependen'cies between code in order for managing the

complexities that may arise as the result of changes and updates on the code.

124

To analyse the code dependencies within a system, all the existing relationships
along with the source and the target of those relationships should be identified [153].
These relationships are also possible to be dependent on other systems or components,
therefore all the indirect dependencies are required to be identified and traced within the
system. There is a graph formalism called the dependency graph, which includes all the
existing relations among the code. In the following section, we demonstrate the
dependency graph for our application and briefly introduce the tool used to perform the
dependency analysis in our study.

6.2.1 Applications Metrics

We used Ndepend [154] to calculate some of the application metrics, as discussed
in this section. Ndepend is a popular tool that can be integrated with Visual Studio and
provide dependency analysis utility as well as metrics calculation.

After creating a project in Ndepend by selecting the target assembly to be
analyzed, the user can run the analysis and then study the reported results. Ndepend
investigates the code and create several reports on the api)lication statistics and metrics.

One of the application’s metrics reported by Ndepend is the number of
Intermediate Language (IL) instructions. When the C# code written in .NET Framework
is compiled, the compiler generates assemblies which contain byte-code. In the .NET
framework, an assembly is a group of types and resources that builds a logical unit of
functionality and is usually used for deployment, versioning, and security purposes.
Assemblies are stored as .exe or .dll files [155]. These assemblies can then be executed
by Common Language Runtime (CLR) which is the engine for code execution in NET

Framework. The byte code is called IL. The number of IL instructions in a system is

125

considered a size measure, which can be determined just after the source code is

compiled. .

Global Summary

Praject Name: New Projectd
Project Fie: C. and Setingsarhood\My Documents\Downloads
Analysis Date: Mon 07 Mar 14:15 most recent

Application New Projectd

#ILinsrucions 4T
#lines of code (LOC) : 761
#lines of comment ;| 222
Percentage Comment . 23%
Assemblies . 1

Namespaces | 4
#Types 13

#Methods 131

#Fields - 76

Coverage:

Percentage Coverage : M/&because no coverage dats specified

Lines of Code Covered : M/Abecause no coverage data specified

Lines of Code Not Covered © MiA because no coverage data speciied

Third party code used by the application:
Third party Assembliesused :© 7

Namespaces used : 19
#Typesused :© 143

Methods used © 186

#Fieldsused : 14

Figure 31: Snapshot taken from NDepened analysis report
Number of lines of code, as reported by Ndepend is different from physical LOC
(which is calculated by counting application’s lines of source code). This metric which is
referred to as Logical LOC, is calculated in Ndepend by the information taken from PDB
files. A PDB or Program DataBase file contains information related to the debugging of
the application and the project state [154]. The logical LOC for a method sis then

calculated by counting the number of sequence points for that method in the PDB file.

126
Sequence points are used to highlight a spot in the IL code that corresponds to a certain
location (usually a part of a statement) in the original code.

As it i,s demonstrated in Figure 31, IL instructions, logical LOC, lines of
comment, number of used assemblies, namespaces, types, methods and fields are
calculated and shown. Also there is some information on third party code used by the
application, as shown in the snapshot, which refers to the code referenced by our
application’s assembly and source code. Brief description about this third party code can
be found in Table 22.

, #LinesOf ¢ #L ¢ Cyclomatic

Type Name Code Instructions Complexity
fChart 178 1169 0
GEControlter 3 218 8
GEWindow 123 115 n
ImainController
mainController 362 2185 58
network 5 28 4
optimizerControfler 13 16 5
Program 3 10 1
pump g 50 7
pumpStation g 52 8
Resources i 40 §
Settings 2 14 2
varableSpeedPump 21 116 18

Figure 32: Application classes’ main metrics breakdown

In Figure 32, the breakdown of the main metrics of our application is tabulated.
Cyclomatic complexity metric values are also calculated and shown for the application

classes. This complexity metric shows the number of linearly independent paths through

127

the program source code [156], which can be calculated using the control flow graphs.
MainController class, fChart (which is the class for the view chart window) and
GEWindow (which is the class for the main window of the system) have higher
cyclomatic complexity values compared to other classes of the system, as the main
functionality of the application are embedded in them. This distribution of complexity is
enforced to different classes of the system as the result of using the MVC architecture.

6.2.2 Dependency Graphs

We used Ndepend [154] to perform the dependency analysis. As explained earlier
in this chapter, dependency graph demonstrates all the existing dependencies among
system’s elements. The dependency can be identified in different levels, such as

namespace level, class level and method level.

s ™

| GEWindow.controllers

~ GEWindow Lo

TR
" GEWindow Properties -

Figure 33: Dependency graph, system namespace level
For example Figure 33, demonstrates the dependencies between the application’s
namespaces. In NET framework, namespaces are used to group the type names in order
to reduce the chance of name collisions [155]. The thickness of the edges connecting
different boxes in the dependency graph is proportional to the degree of coupling
between those entities. Here this means that the edge thickness connecting the two

namespaces is proportional to the number of classes of the source namespace which are

128
using the classes of the target namespace added to the number of classes of the target
namespace used by the source namespace. As seen in the figure, there exists a noticeable
strong dependency between the application and the controllers compared to the
dependency between controllers and model or the dependency between application and
model, as the controllers are in charge of controlling the interactions between models and
views as well as handling and implementing the business logic in the system.

Looking from architectural level, this is the implication of using MVC
architectural pattern, as according to the MVC architecture, the main functionality
(business logic) of the system is integrated in the controllers and the user achieves this
functionality by interacting with the system through the provided views (forms). Figure
34, presents the dependencies among the mainController class methods. Bnief description
of these methods is presented in Table 21. The demonstrated relationships show the
methods that are being called from within the other methods. For example showCharts()
method, calls creatOptChart(), loadCombo() and createStChart(). This gives the reader a
clear understanding of the source code implementation within mainController. The

dependency graphs for other controllers of the application are presented in Appendix B.

Method Name Description

getOptimizationPath | Returns the optimization formulation file path.

setOptimisztionPath | Extracts the optimization formulation file path from the
corresponding XML file whenever a new pipeline is loaded to the
system

| getXMLPath The getter method for the XML path member variable

setXMLPath The setter method for the XML path member variable

getlmageC The getter method for the image index created by the MS Excel
charting utility

setlmageC The setter method for the image index created by the MS Excel
charting utility

getOptCost Returns the total cost of the optimized operation

getKMLPath Extracts the KML file path from the corresponding XML file
whenever a new pipeline is loaded to the system

getSteamReader Returns a stream reader by which the corresponding text file can be
accessed

getToLine Reads the specified text file lines up to the specified line

readNetworkData Populates the network object with the corresponding data taken
from the text files whenever a new pipeline is loaded to the system

loadCombo Dynamically re-loads the combo box content (on the view chart
window) according to the options chosen by the user

showCharts Shows the charts according to the options set by the user in the
view chart window

createOptChart Generates the MSExcel charts demonstrating the optimal and
SCADA pipeline operation cost daily values

speedRoots Calculates the roots of a quadratic equation designated for
calculating the speed of a variable speed pump based on a group of
constants corresponding the each pump, the amount of head
generated by the pump and the current flow rate passing through the
pump

createSpeedChart Generates the charts demonstrating the hourly speed of each of the
variable speed pumps

createStChart Generates the charts demonstrating the hourly cost required to
operate each of the pumps

releaseObject Releases the objects created while using the charting utility in MS

Excel

Table 21: mainController class methods

129

130

manConlroller

ShowCharts{String
etwork)

 mainController

readNetworkDatanetwork)

: ,.. th,mm.\

0

 raeontmler RO :

¢ rpnContole
ool

mainController

createOptChart{int32 o=
network)

' manContoleoadComt)

Chartpatwor)

/ /m"
mainController o bt
.createStChart(String =
,Int32,network)

{SraanReader 32)
m maiContoler
: . getkmiPath{String)
mainController e
CreateSpeedChart(String Sl
Int32,network)

Figure 34: Dependency graph, within mainController

131
In the dependency graph shown in Figure 35, the dependencies between our
application’s assembly (the box labeled GEWindow) and other used assemblies or
namespaces are presented. According to the figure our system is highly coupled with
System.Winows.Forms namespace. This is thainly because GEWindow is a Windows-
based application and System.Winows.Forms namespace contains classes which provide

user interface features for Windows-based applications.

e Y
* System.Drawing

! System.Xm| |

['System.Windows.Forms\‘

© Excel

" mscorlib

/ \
" Interop.EARTHLD °

System

Figure 35: Dependency graph between .Net assemblies

132

The dependency between GEWindow and mscorlib is also noticeable as this

assembly contains base class libraries of .NET framework. A brief description of the

assemblies used in our system is presented in Table 22.

More details on the applications statistics and other analysis results performed

using Ndepened, are presented in Appendix B.

Assembly name

Description

System.Drawing

This namespace provides access to GDI+ basic graphics
functionality [157]. (Windows GDI+ is a class-based API
intended to be used by C/C++ programmers which enables
applications to use formatted text and graphics on both the
video display and the printer [158]).

System. XML

The namespace offers standards-based support for
processing XML, such as XML 1.0 and XSD Schemas
[157].

System.Winows.Forms

This namespace contains classes for building Windows-
based applications that take full advantage of the rich user
interface features available in the Microsoft Windows
operating system [157].

Microsoft.Office.Interop.Excel

This assembly, which belongs to the family of Component
Object Model (COM) Interop assemblies, allows
unmanaged (COM) code to be called from managed
(.NET) code by using the Microsoft NET Framework and
the common language runtime (CLR) [159].

mscorlib

The mscorlib.dll is a shared assembly, which includes the
important base class libraries of .Net framework.
Applications written for the NET framework are executed
in the software mscorlib.dll to manage the program's
runtime requirements [160].

Interop. EARTHLib

Another assembly from COM family to manage the
application’s interaction with Google Earth.

System

This assembly is a reusable and self-describing building
block of common language runtime applications [158].

Table 22: Description of the external assemblies and namespaces used in our

application

133
6.3 Discussion .

According to the emerging nature of the requirements in SES [79], they can not
be fixed in the beginning of the development. This can be later the source of further
challenges in the development [33]. In order to provide evidence in response to our case
study first research question, our experience in the implementation and development of
the system confirms that requirement have an emerging nature throughout the
development; thus, we chose to adopt the iterative development approach, as suggested in
[90], also in response to H2.2 (second hypothesis of case study second question:
Adopting iterative approach fits the “evolving and emerging requirement” nature of
engineering software). Defining iterations for the development introduces the flexibility
of bringing in the newly defined requirements at later iterations to the software system. In
iterative approach in each iteration, the most important requirements are taken into
account and integrated into the system.

Maintenance difficulties and the need for long-term maintenance are mentioned to
be challenging in SES development according to the literature. We performed
dependency analysis in order to extract the dependencies among different system
artefacts. Regarding the case study second research question, this was conducted to help
further maintenance of the system artefacts. Having dependencies demonstrated as the
result of dependency analysis, the elements which are dependent on the changing
elements or the elements which are being referenced by the changing elements can be

easily identified for any potential need for update or change.

134

6.4 Chapter Summary

In this chapter, the iterative development process used to develop the system
under study was introduced. Dependency analysis, in order to extract the dependencies
among the system artefacts, was performed. This analysis identifies the highly dependent
elements, whish later gives the developer a precise idea about the element relationships,
and is helpful when any artefact of the application is required to be re-used, upgraded or
replaced. Some of the application metrics such as lines of code, IL instructions and
cyclomatic complexity was calculated and reported followed by selected dependency
graphs.

Next Chapter will discuss ‘the testing approach used to test the functionality of the

system as well as testing the GUI.

135

Chapter Seven: Testing

The quality of the software systems need to be systematically checked to assure
those systems meet the requirements and specifications. Testing SES »in specific, as
mentioned in Chapter 3, is a twofold challenge; testing the scientific/engineering solution
offered to address a scientific or engineering problem besides testing the software which
is designed to utilize that solution in a proper and easy way. To be more specific in the
context of software engineering, by testing we mean investigating if a program is
behaving as expected [161]. Here, we aim at automated testing compared to manual
testing, in which a program or application is written to exercise and verify (assert)
Software Under Test (SUT). To be more specific, here we automatically run manually
written tests.

In this chapter we discuss the automated testing strategies we undertook, in order
to test the software functionalities. To achieve this goal, we planned to perform
automated unit testing and automated GUI testing of the system as two of the most
common and standard testing techniques used in software projects to detect bugs. As
mentioned in Chapter 6, we adopted the iterative development approach in which testing
is a part of each iteration. Therefore, in each iteration, the implemented features vs:ere
tested in addition to testing the previous code to make sure nothing was unintentionally
broken by adding the new features.

As mentioned in Chapter 5 on the analysis and the design of the system, we used

MVC architectural design pattern in order to classify and separate the concepts in the

system in order to make the testing process more straight and manageable. In MVC

136
architecture, the business logic is separated from view and presentation logic, which
makes testing of the functionality independent from testing the view layer [158, 162]. As
shown in

Table 20, the system consists of 3 controllers, each of which is responsible for a
group of similar functionalities provided by the software. For example all the methods
and variables required for implementing the interactions and functionalities related to
Google Earth in the system and working with that are placed in GEController. This
separation and classification of functionalities and concepts, as will be discussed in the
next sections, assisted us in figuring out which classes contain the code that is more likely
to change or break during the development of the new features and which classes does
not require being included in the testing cycles, mostly because they are using adequately
tested libraries.

For the verification of the accuracy of the optimization model, sensitivity analysis
on some of the important pipeline operation parameters is conducted by another student
in our group, who has formulated the optimization problem at first place. The interested
reader can refer to [139] for fufther details on the verification of the optimization
problem.

In this chapter, first we describe the details of the unit testing practice we
undertook, presented in Section 7.1, followed by the GUI testing method and scripts we
designed to test the correctness of the functionality of the GUI, presented in Section 7.2.
In Section 7.3, we presented the mutation testing performed on the optimization
formulation script to further test the correctness of that script. Finally in Section 7.4, we

discussed the lessons learned.

137
7.1 Unit Testing and NUnit Framework

Unit testing is a common standard practice in testing software projects as it is
beneficial and applicable to all levels of programming languages (low level, middle level
and high level) [163]. Unit testing refers to testing the individual units of the computer
applications in order to make sure that system units are working as expected. When this
activity is required to be automated, as in the tes'iing of complex systems, unit testing
frameworks are used. A unit testing framework, which is often a free open source
software, in general provides the tester with a collection of key classes and
functionalities, such as TestCase, to design, code and run unit tests [163]. TestCase class
is used to implement the conditions and variables by which the system under test is being
tested.

We have used the NUnit framework, which is a unit testing framework from the
family of XUnit frameworks (such as JUnit and PyUnit), designed specifically to write
and run unit tests for all .Net languages [164]. We created another project parallel to the
project containing the source code of the system in Visual Studio to build our test suite
for defining the test cases using NUnit framework. We generated a test suite containing a
total of 151 test cases for the system. These test cases were generated using black-box
testing method. By black-box testing here, we mean testing the functionality of the
individual software units (by units here we mean methods in particular) against the
requirements of the system, regardless of the source code. The expected values for the
test cases are defined based on the expected functionality of the software features. It is
worth mentioning that in this section we present the testing procedure we undertook for

testing the software only, not the optimization module.

138

As performing exhaustive testing to cover all the possible combinations of input
domain values is not feasible in most software applications, several testing techniques are
devised to systematically reduce the number of test cases required to test a system. We
employed “category partitioning” method, in order to generate our test cases. In category
partitioning, the input domain for the method under test is divided into conceptually
independent partitions and then a test value will be selected from each partition to
generate a particular test case [161].

For example, assume that we want to test the getKMLPath method. This method
gets a string value representing the path for a XML file as its argument and returns a
string which is the path for the corresponding KML file. Instead of testing the method
with all the possible input string values, we can generate 2 test cases to compare the
method actual return values against the expected values defined by the method
specifications. In this particular situation, input strings can be divided into two separate
partitions; one the set of all the strings referring to a path where a XML file is saved and
another set where either the string is not a valid path or it is referring to location where no
XML file can be found. The expected return value for any nominal string taken from the
first set is a string referring to a valid path where the corresponding KML file is stored.
The expected return value for the nominal strings taken from the second set is a blank
(according to the method specification decided in the implementation phase). All the
other test cases are generated using thg same method. A snapshot of the test cases

generated for getKMLPath method in Visual Studio is shown in Figure 36.

139
After completion of the coding in each development iteration, we run the test suite
and the test case failures (if any) were investigated for the root cause of the failure in

order to remove the defects.

/// <summary>
///A test for getkmlPath
///</summary>
[TestMethod()]
public void getKMLPathTestNominalRightPath()
{
mainController target = new mainController();
string xmlpathll = @"C:\Users\Roshanak\Dropbox\Project\Pipeline
Optimizer\bin\Release\data.xml";
string expected = @"h:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE\\Pembin_Pipeline.kml";
string actual;
actual = target.getkmlPath(xmlpathil);
Assert.AreEqual(expected, actual);

}

/// <summary>
///A test for getkmlPath
///</summary>
[TestMethod()]
public void getKMLPathTestNominalWrongPath()
{
mainController target = new mainController();
string xmlpathll = @"C:\Documents and Settings\rfarhood\My
Documents\Dropbox\Project\Pipeline Optimizer\bin\Release\datal.xml";
string expected = "";
string actual;
actual = target.getkmlPath(xmlpathil);
Assert.AreEqual(expected, actual);

}

Figure 36: Test cases generated for gétkmlPath method

Table 23 summarizes the information related to the number of unit test cases
generated for each of the classes of our application. As shown in the table, we generated
93 test cases for the methods of mainController class .(methods are described in Table
21), 4 test cases for the optimizerController class and a total of 54 test cases of the model
classes of the system. Breakdown of the number of the test cases generated for

mainController class methods are tabulated in Table 24.

140

System classes Class type # of unit test cases
Pump Model 40
PumpStation Model 10
Network Model 4
MainController Controller 93
GEController Controller 0
OptimizerController Controller 4
GEWindow View 0
FChart View 0
Total 151

Table 23: Overview of the system classes and the number of the generated unit test

cases using category partitioning approach

Method name # of test cases
createOptChart
createSpeedChart
createStChart
getkmlPath
| getToLine
loadCombo
readNetworkData
setOptimizationPath
speedRoots
| getOptimisationPath
getxmlPath
setxmiPath
| getlmageC
setlmageC
| getOptCost
Total 93
Table 24: Number of test cases generated for methods of mainController class

[+ 4]

=)}

NN NN N[NNI |W W N[OOI\

The corresponding test run results, performed in Visual Studio is shown in Figure
37. As seen in the snapshot, all the 151 test cases passed and we had no test failures in

this specific test run. Sample test cases can be found in Appendix C.

141

Test Resuits
*3: | €3 |Roshanak@ROSHANAK-PC 2011- +}| % Run~ kD Debug > & @ | ¥ = %4 F | GroupB
) 1\7 I_e_s_t_gu_n__elm Raults; }51{15} passed; Item{s) checked: O

Result Test Name Project Error Message

@)@ Passed createStChartTestNominalPath PipelineOptimizerTestProject
i)l Passed createStChartTestNominaiHeader PipelLineOptimizerT estProject
7 ¢Z)@ Passed createStChartTestNominalOpti PipelineOptimizerT estProject

@ Passed createStChartTestNominalScada PipelLineOptimizerTestProject

4@ Passed createStChartTestHighBoundaryOpti PipeLineOptimizerT estProject
(1)@ Passed createStChartTestlowBoundaryOpti PipelineOptimizesTestProject
7) Passed createStChartTestHighBoundaryScada PipelineOptimizerT estProject
createStChartTestLowBoundaryScada PipelineOptimizerT estProject

createStChartTestNominalHour PipeLineOptimizerT estProject

. getTolineTestNominalline PipelineOptimizerT estProject
I qfixg Passed getTolineTestFirstLine PipeLineOptimizerT estProject
] getTolineTestWrongPath PipelineOptimizerT estProject
EditParamTestRightPath PipeLineOptimizerTestProject
EditParamTestWrongPath PipelineOptirnizerT estProject

Ll RunOptimisationRightPath PipeLineOptimizerT estProject
i« Passed RunOptimisationWrongPath PipeLineOptimizerT estProject
"¢ Passed speedRootsTestPPPPPP PipeLineOptimizerT estProject
L @)@ Passed speedRootsTestPPPNPP PipelineOptimizerT estProject
7 i) Passed speedRootsTestPPNPPP PipelLineOptimizerT estProject
i ¢3)«a Passed speedRootsTestPPNNPP PipelineOptimizerTestProject
el Passed.. . soeedRootsTestPNPPPP ngumggn;“i’uuzgr_tgsxpme;g

i Sk 3 ~ e i

i

(ak Lot B3 Output T Test Results
Figure 37: Snapshot taken in Visual Studio after running test methods of

mainController class, showing all 151 test cases were passed in this run

We did not generate test cases for the rest of the classes in the source code: We
did not perform unit testing on the category of view classes, as we used windows-based
standard .Net forms. We assume these .Net components are previously tested adequately
(before deploying .NET framework) and in order to test the functionality embedded in the
forms, we performed GUI testing. The methods used in GEController are the methods
taken from Google Earth API (referenced from EARTHLIib.dll), for managing the user
interactions with Google Earth, such as zoon in, zoom out, drag, click to open the
information box of a certain object shown on the map and resizing. We assume these

methods were sufficiently tested by Google team while releasing Google Earth [165].

142
7.1.1 Code Coverage

One of the measures used in software testing is code coverage and it shows how
adequately the source code is tested using the test suite. There exist different types of
code coverage criteria. In this work, we measured the coverage based on symbol
coverage and branch coverage criteria, as these two types of coverage were supported by
the tool we used for test coverage analysis.

Symbol coverage, similar to line coverage, measures how many sequence points
are covered by the test cases [166]. As we mentioned in Chapter 6, sequence points are
used to highlight a spot in the IL code that corresponds to a certain location (usually a
part of a statement) in the original code. Therefore, a statement can be broken down into
several sections each of which is referred to by a sequence point. Branch coverage
measures which decision outcomes in the source code are tested by the test suite.

The coverage was measurgd using NCover [166]. NCover is a .Net code coverage
tool by which the users can investigate the parts of the code that are not yet covered by
the test suite. The symbol and branch coverage scores calculated and reported by NCover
are shown in Figure 38. As seen in the figure, using our test suite, we got 95% symbol
and branch coverage for the mainController class and 100% symbol and branch coverage

for the methods of model classes.

143

4 - 1 GEWindow {65%) - .3 GEWIndow (62%)
: {) GEWindow (35%) i €} GEWindow {10%)
< {) GEWindow.controllers (87%) « {} GEWindow.controllers (86%)
¢ *e GEController (0%) « e GEController {0%)
4 %¢ mainController (95%) « &¢ mainController (95%)

% createOptChart (100%)

% creaveSpeecChart (95%)

€ createStChart (100%)

% getimageC (100%)

% getkmiPath (100%)

€ getOptCost (100%)

@ getOptimisationPath {100%)
& getSteamReader (100%)

«p getToline {(100%)
& getxmiPath (100%)

< loadCombo {100%)

< malnControtler {3100%)
g readNetworkData (100%)
< reieaseObiect (57%)

% setimageC (1009%:)

@ setOptimisationPath (100%)
% sebaniPath {100%)

% showCharts {D%)

% speedRoots {100%)

“e optiController (80%)

& EditParam {(100%)
W ortilomtroller
@ RunOptimisatior {72%)

“p createOptChart (1009%)

@ createSpeedChart (86%)

% createStChart (100%)

@ getimageC {100%}

% getkmiPath (100%)

@ getOptCost (100%)

& getOptimisatior®ath {(1009%)
¢ getStearmReader (100%)

% getToLine (100%)

@ getxmiPath (100%)

% loadCombo (100%)

‘@ mainCortralier

4 readNetworkData (100%)
¥ reweaseObliect

& setImageC (100%)

4 setOptimisationPath (100%)
% setxmiPath {(100%)

% showChacts (0%)

¥ speedRoots (100%)

4 <3 optiController (100%)

@ EditParam
g optiController (100%)
4 RunOptimisation (100%)

2 {} GEWindow.model {100%)
i <2 network {100%)
1 “4¢ pump (100%)
1 <ie pumpStation {100%)

- {} GEWindow.model {100%)
i %% network (100%)
{ Ve pump {100%)
i ¢ pumpStation (100%}

Figure 38: Symbol and branch coverage values taken from NCover, the elements

which are not covered 100% by the test suite are color coded in red

A snapshot of the covered and uncovered code for releaseObject method in the
mainController class by the test cases is shown in Figure 39. The uncovered code is
highlighted in red.

7.1.2 SUT and Test Suite Dependencies

As software projects are always subject to being evolved or maintained, source
code change is inevitable. Test impact analysis [167] is performed to analyze the code
changes and to help the selection of those unit tests that are impacted by the source code

change, which means it brings traceability into the testing practice.

144
Out test suite consists of several classes each of which includes the test cases for a
certain method. We have depicted the relationships among the system artefacts and the

test suite classes in a graph called Test Coverage Graph [168], as shown in Figure 40.

§ i foreach [Brocess p i Process.GetProcessesByNaze (“excel®))
17 x5 pHiiL(:
§ <.: currenvinagspath = imagepath;
§ <l returs imagefath;
- }
private void releaselbiect (oblect obj)
e {
. Try
g Systez.Runtize.lnteropServices . Marshal.ReleaseConObiect obd)
i B b} = rails
L H
finall
08 v GC.Collect();
08 B }

Figure 39: Snapshot of the covered and uncovered code in NCover for releaseObject

method in the mainController class

This mapping assisted us in performing our testing activity more efficiently, by
demonstrating the dependencies among test classes and corresponding methods, which
make the maintenance of the test suite more manageable, faster and easier whenever

source code changed by introducing the traceability concept to the testing practice.

145

(

Test ltems
A

\.

createOptChartTest

<77
ll

Q

0

{ speedRootsTest /

createStChartTest

|

| createSpeedChartTest ' createOptChart }
{ /li

|

getKMLPathTest |

getTolineTest

{ loadComboTest

{ readNetworkDataTest

| setOptimizationPathTest

LgetOptlmlsatIonPathTest } /

getXMLPathTest | /

setXMLPathTest |

setimageCTest |

{
{
{_getimageCTest
L
|

getOptCostTest

readNetworkData] \

createSpeedChart]

createStChart }

getKMLPath

getSteamReader

getTolLine]

loadCombo]

getCombo]

setOptimizationPath }

i getOptimizationPath]

Y
SUT items

speedRoots]

getOptimisationPath]

getXMLPath
setXMLPath }
getimageC
setimageC J
getoptCost | _/

Figure 40: Test Coverage Graph for the test methods of mainController

7.2 GUI Testing

GUI testing (Graphical User Interface) is the process of testing the system’s

graphical user interface to assure it functions as expected. As a result, in practice GUI

testing is often considered a major part of functional testing, which is testing of all

features and functions of the system to ensure the requirements and specifications are all

met [161, 169]. In general to generate adequate set of GUI test cases, all the functionality

of the system needs to be covered so that the test suite fully exercises all the possible

146
events generated using the GUI [170, 171]. As our system consists of GUI components to
offer the system functionality to the operators, in this section we describe our practice of
testing the system GUI

7.2.1 Event-Flow Graph

In order to simplify testing the system functionality through its GUI, we extracted
and investigated high level event-flow graph [169] of the system. GUI test cases are then
generated by traversing this graph in order to test the sequence of the events created by
the user while interacting with the system [169, 171]. The high level event-flow graph of
the system, depicted as the interaction overview diagram (a type of UML activity
diagram), is shown in Figure 41.

As seen in the figure, the operator can start working with the system by loading a
new pipeline to the system. This gives the operator the possibility of browsing pipeline
elements in Google Earth. Then the operator can open the optimization formulation file to
edit the target parameter(s) and then run the optimization solver. This often is followed
by viewing the optimal operation parameter values and comparing them with SCADA
data using comparative charts.

7.2.2 GUI Events and Widgets

GUI events are created when the user interact with the system using GUI
components [169]. These components are called widgets in this context, such as menus,
buttons, text boxes and combo boxes [171]. Different types of possible events generated

in our system’s GUI are summarized in Table 25.

147

f
——__;] Load pipeline }%
[View charts] } N,
_%/
[Load new] [Browse} [Exi]

f Browse pipealine
| in Google Earth
A »

[Exig

[View charts] €] Cairsomven [Bdid| (e soiver]

i Edit
- optimization
| formulation file /

-

Call
optimization L—
solver JE
! [Ediy]
g View | AN
harts §
«Wwf._,_? [Exig [Load new pipeline]

Figure 41: Interaction overview diagram of the system

Event type Corresponding Widget Corresponding user action

Mouse left click | Main menu When the user left clicks on the main menu to
select one of the menu options

Mouse left click | Submenu When the user left clicks to select one of the sub
menu options

Mouse left click | Button When the user clicks on a button

Text change Combo Box When the user changes the selected option of the
combo box

Selected change | Radio button When the user changes the status of a radio button
from selected to unselected and vice versa

Table 25: System GUI events, their corresponding widget and user actions

148
7.2.3 Event Sequences
In order to accomplish a target task in the system, as shown in the event-flow
graph, the user is required to pass through several steps while interacting with the system,

which results in the creation of a sequence of the events. These events are summarized in

Table 26.
Target Event sequences generated by the user
Load new Click main menu “File”, click “Load new pipeline”, clicks to choose
pipeline the target XML data file, click “Ok”
Browse the Zoom in, zoom out, drag, click on pump stations to open the
pipeline information window, click to close the information window

Edit optimization | Click main menu “Tools”, click “optimization”, click “Edit

formulation file parameters”, save file, close

Call the solver Click main menu “Tools”, click “optimization”, click “Run”

View charts Click main menu “Tools”, click “View optimization charts”, choose
chart type by clicking “chart type” radio button, choose station name by
clicking on the corresponding combo box, close “view charts” window
Close the Click main menu “File”, click “Exit”

application
Table 26: Summary of the events generated by the user interacting with the system

7.2.4 GUI Testing Tool

There exist several commercial tools for GUI testing, such as IBM rational
functiongl Tester by IBM [172] and Visual Studio 2010 Premium edition [173], each of
which offer a set of features to generate test cases and manage the testing activity for
large-scale GUI-based software applications. There also exist open source software such
as NUnitForms [174] which is an NUnit extension for unit and acceptance testing
of windows forms applications and GUITAR [175] which is usually used for Java-based
applications.

We used Ranorex Studio [176] to perform GUI testing, as this tool was easy to
setup and provided us with the required features to generate our test scripts. Ranorex

Studio supports test implementation and GUI script record and play back facility for the

149
applications developed in C#. We employed “record/play back” [177] method. In this
method the test scripts are recorded using the recorder utility provided by the test tool and
then the scripts will be played back to check the correctness of system functionality.

7.2.5 GUI test Cases (Test Scripts)

To generate GUI test scripts, the event-flow graph of the system was traversed
manually to extract possible paths, representing the scenarios when the user interacts with
the system. Using the breakdown of the events presented in Table 26, we recorded 23
GUI test scripts, primarily based on the event-interaction coverage criterion that requires
all the edges of the event-flow graph to be covered by at least one test case [178].
Additional to getting 100% event-interaction coverage score, we added some test scripts
to cover some common scenarios that an operator may go through while working with the

system. These scripts are listed in Table 27.

RECORD B PLAY i ARIABLES

P Y) v w « 4e Add New Action - Turbo Mode [T_E_] x Speed L.—_—_—ﬂ x Repeat %
[Duration Action
w1 2m= Run Application C:\Users\Roshan.
%2 I1iues Mouse Click Left 22nm % MenultemTools
%3 Mouse Click Lett 2018 % MenulitemTools
o4 Mouse Click Leh 54,11 % MenultemView_Optimi
k5 Mouse Click Lef 813 =5 MenuBarMenu
w6 Validate Exists 7 FormCharts
w7 Mouse Click Left 8 =) ButtonOpen
%8 Mouse Click Left 1510 ¢ ListhemPrinceGeorge
w9 Validate AttributeE qual Text (1] #) TextNO
e 10 Mouse Click Left 43,12 (@) ButtonClose
% 11 Mouse Click Left 20:12 % MaenuitemFile
o 12 re Mouse Click Left $1:10 & MenultemExit
<! : . 3} o W
ca i M T+ ek e Add New tem ~ @ testiRepository.nrep v 24 Properties : o Variabl ¥ Clesnup
Item Path
i md FormPipelineOptimizer Base: /form{Bcontroiname = GEWIndow’)
i Ri! ContextMenuGEWindow Base: fcontextmenu{Gprocessname ='GEWIndow’}
@ Wl FormCharts Base: fform[@controiname ="RChart]
W 17¢ ListN1000 Base: Aist{@controlid='1000"

Figure 42: Snapshot of test script taken from Ranorex Studio environment showing

different GUI actions included in the script

150

A snapshot of a test script (script number 4 in Table 27) recorded in Ranorex

Studio testing environment is shown in Figure 42.

Test Paths

Script #

)| Load pipeline-Close

2 Load pipeline-Load pipeline-Close

3 Load pipeline-Browse pipeline- Close

4 Load pipeline-Browse pipeline-View charts -Close

5 Load pipeline-View charts- Close

6 Load pipeline-Browse pipeline-Edit formulation file- Close

7 Load pipeline-Browse pipeline-Edit formulation file- Call solver- Close

8 Load pipeline-Browse pipeline-Edit formulation file- Call solver-View charts-
Close

9 Load pipeline-Browse pipeline-Edit formulation file-Call solver-View charts-
Load new pipeline- Close

10 Load pipeline-Browse pipeline-Edit formulation file-Call solver-View charts-
Load new pipeline- Browse pipeline- Close

11 Load pipeline-Run solver- Close

12 Load pipeline-Run solver-View charts- Close

13 Load pipeline- Edit formulation file-Run solver- Close

14 Load pipeline- Edit formulation file-Run solver-View charts- Close

15 Load pipeline-View charts- Edit formulation file-Run solver- Close

16 Load pipeline-View charts- Edit formulation file-Run solver-View charts- Close

17 Load pipeline-Run solver-View charts-Edit formulation file-Run solver- Close

18 Load pipeline-Run solver-View charts-Edit formulation file-Run solver-View
charts-Close

19 Load pipeline-Run solver-View charts-Edit formulation file-Run solver-View
charts- Edit formulation file-Run solver-View charts -Close

20 Load pipeline-Run solver-View charts- Edit formulation file-Run solver-View
charts- Edit formulation file-Run solver-View charts-Load new pipeline-Run
solver-View charts-Close

21 Load pipeline-Browse pipeline- Run solver —Close

22 Load pipeline-Browse pipeline- View charts —Close

23 Load pipeline-Browse pipeline- Load new pipeline- Close

Table 27: Different paths used to record GUI scripts

As seen in the snapshot, the script recorded corresponds to a scenario where in the

application, user chooses to open “view optimization chart” window (line number 4 as

shown in the snapshot) and in that window *“S3” station is selected and the value of total

optimization cost is validated (line number 9 as shown in the snapshot), the close button

151
of “view optimization chart” window is clicked and then the user chooses to exit the
application. In the “play back™ mode in Ranorex Studio, the recording can be played back
and the validations as well as the sequence of the events can be checked to assure the
correct system functionality. A snapshot showing the success of the playback

corresponding to above scenario is shown in Figure 43.

Recordingl

& success
Exeiution oma Jompiter wame
23/04/2011 10:48:37 PM ROSHANAK-PC
Osarazng syste~ Szreen EimenFons

Windows 7 32bit 1366x768
iFTgLage
en-Us

Fiter; Wl Info i success

Time tevel Category Message

505 97 .. Run application C:\UsersiRoshanak\Dropboxi\ProjectiPipeline

00:02.27% Info Application OptimizersbiniRelease\GEWindow .exe with arguments ".

o0:02.475 Info Mouse Mouse Left Click item FormPipelineOptimizer MenultemTools' at 22;11.
00:08.046 Info Mouse Mouse Left Click item ‘FermPipelineQptimizer.MenultemTools’ at 20;15.
00:09.061 Infc Mouse Mouse Left Click item 'ContextMenuGEWindow .Menultemview_Optimisation_Charts at 5
00:17.743 Info Mouse Mouse Left Click item ‘FormPipelineOptimizer.MenuBarMenu’ at 58;13.
00:18.313 Info validation Vvalidating Exists on item ‘FormCharts.FormCharts',

00:18.634 Success validation Elemant for item ‘FormCharts' does exist,

00:19.471 Info Mause Mouse Left Click item FermCharts ButtonOpen' at 4;8.

00:20.433 Info Mouse Mouse Left Click item 'ListN1000 ListItemPrinceGeorge’ at 151;0.
01:61.095 Infe validation Validating AttributeEqual (Text='0") on item ‘FormCharts, TextNO",

Attribute ‘Text’ of element for item ‘test1Repository FormCharts. TextNO' does match the

01:01.318 Succass validation specified value.

061:13.461 Info Mouse Mouse Left Click item FormCharts.ButtonClose’ at 43;12.
01:14.309 Info Mouse Mouse Left Click item ‘FormPipelineOptimizer. Menultemfile’ at 20;12.
01:14.961 Info Mouse Mouse Left Click item "ContextMenuGEWIndow. MenultamExit’ at 51;10.

Figure 43: Snapshot taken after playing back the test script shown in Figure 42,

showing the success of the validations included in the script

7.3 Mutation Testing on Optimization Formulation Script

Mutation testing is a testing technique which is conducted in order to assess the
test suite adequacy for detecting software defects and also to improve the code coverage

by the test cases [161]. During mutation testing, small syntactic changes, such as

152
arithmetic or logical operator changes are made to the source code. As a result, a set of
Similar faulty programs called mutants are created. Then we run the test suite on these
faulty versions, and if any test case fails while testing a mutant, the mutant is said to be
killed. If the existing test cases in a test suite can not kill the mutants, the test suite is not

adequate.

@FOR(Station(s) | s #EQ# 1:
@BIN(B_S11(t)) ;

@BIN(B_S12(t)) :

@BIN(Te _S1(t)) ;

H_S1_Suc(t) = 1238000/ro/g ;
H_S1_Disch(t) = H_S1 Suc(t) + H_S11l(t) + H_S12(t) :

P_S11(t) = P_Q S11 * (Q T(t) - Q S11(t)) + P_H _S11 * H_S11(t) +
P_Icpt_S11 * B_Sl1ll{(t) ;

P_S12(t) = P_Q S12 * (Q_T(t) - Q_S12(t)) + P_H_S12 * H_Sl2(t) +
P_Icpt_S12 * B_S12(t) ;

H_S11(t) < B_S11l(t) * H Max ;

H_S11(t) > B_S11(t) * H_min ;

H_S12(t) < B_S12(t) * H Max ;

H_S12(t) > B_S12(t) * H_min ;

Q_S11(t) > (1-B_S11(t)) * Q min ;

Q S11(t) < (1-B_S11(t)) * Q_Max ;

Q_S12(t) > (1-B_S12(t)) * Q_min ;

Q_S12(t) < (1-B_S12(t)) * Q Max ;

C_S11(t) = P_L_S1(t) * Rate L_S1(t) + P_H_S1(t) * Rate H_Sl(t) ;

P_L_S1(t) + P_H S1(t) = P_S11(t) + P_S12(t) ;

P_L_S1(t) < P_Thresh_S1 * Te_S1(t) ;

P _H Sl(t) > P_Thresh S1 * (l1-Te_Sl(t)) ;

P_H_S1(t) <= 100000 * (1-Te_S1(t)) -

H_1000(t) = H_S1_Disch(t) + (HS_S1 - HS_1000) ~ Vv_1000(t) - (a* Q_T(t)
+ b) * 1 .S1_1000 ;

H_1001(t) = H_1000(t) + (HS_1000 - HS_1001) - V_1001(t) - (a * Q T(t)
+ b) * 1_1000_1001 ;

H_Sunset(t) = H_1001(t) + (HS_1001 - HS_Sunset) - (a * Q T(t) + b) *
1 1001_Sunset ;

H_1049(t) = H_Sunset(t) + (HS_Sunset - HS_1049) - V_1049(t) - (a *
(Q_T(t)+Q_SP(t)) + b) * 1_Sunset_1049 ;

H_1051(t) = H_1049(t) + (HS_1049 - HS_1051) - V_1051(t) - (a *
(Q_T(t)}+Q_SP{(t)) + b) * 1_1049_1051 ;

H_S3_Suc(t) = H_1051(t) + (HS_1051 - HS_S3) - (a * (Q_T(t)+Q_SP(t)) +
b) * 1_1051_83 ;

)i

Figure 44: Sample part of the optimization formulation file [139]

153

As we could achieve high code coverage with our test suite, as described in
section 7.1.1, we did not perform mutation testing on the application code. We applied
mutation testing on the optimization script, besides the sensitivity analysis done by
another member of our research group, in order to add more to the verification of the
optimization formulation file. The formulation file format is similar to scripting
langﬁages, such as SQL. A piece of the optimization file is shown in Figure 44. Here in
order for a mutant to be killed, we consider two cases: (1) if the optimization solution is
not feasible, meaning that if the solver cannot find the global optimum, and (2) if the
optimal values achieved from running the faulty script differ from their values achieved
from running the original script.

In order to create mutants, we considered logical and arithmetic changes as well
as random variable name changes and statement deletion. The changes are applied

manually. The mutation testing is summarized in Table 28.

Mautation Qperator Number of Mutants | Description
Change < to > 27 All killed
Change > to < 32 All killed
Change + to - 20 All killed
Change * to/ 20 All killed
Change <= to >= 5 All killed
Variable name change 20 All killed
Statement deletion 10 All killed
(randomly selected)

Table 28: Mutation testing summary
As scen in the table, we have 27 occurrence of “<” and 32 occurrence of “>". We had
over 130 occurrences of + and * operators, from which we randomly choose 20 operators
to create faulty scripts. Also we performed a group of variable name changes, where the

name of a variable was replaced with another variable. Some cases of randomly statement

154
deletions were also considered to create mutants. Then we run the optimization engine to
solve the faulty versions and we investigated the solver output to detect the changes in
achieved optimal values or any infeasible states. As seen in the table all of our mutants
were killed, which means we ,either achieved different optimal values compared to
original optimal values after running faulty versions or the optimization solution was
infeasible. This can Be related to the high sensitivity incorporated with the nature of the
pipeline problem formulation.

7.4 Discussion

According to the SLR performed as a part of this thesis, testing SES remains a
great challenge for the practitioners and the complexity of verification and validation of
SES is still an open issue. To elaborate our experience regarding the first research
question of the case study conducted, we had to deal with the validation of the scientific
part of the work (as called “scientific validation” by Hook and Kelly [75]) as well as the
correctness of the software developed to utilise that scientific core (referred to as “code
scrutinization” in [75]).

The first challenge is the result of not having certain oracles, as mentioned before,
and the experience of testing the “engineering core” of our system confirms that in
response to H1.3 (third hypothesis of the case study first research question), as no
“expected optimal solution” were available upfront, so that the “actual optimal solutions”
achieved from the developed optimization module could be tested against them.

To address the first challenge in response to H2.4 (forth hypothesis of the case
study second research question), as reported in the related section in [139], the sensitivity

analysis of the optimization formulation file was undertaken. Also the optimization

155
problem was solved by another technique (i.e. genetic algorithm) so that the results of
two methods can then be compared. If two methods generate similar results, this can add
to the validity of the optimal results.

In order to address the second challenge, as described in this chapter, standard
testing activities such as unit testing and GUI testing were conducted on the system, in
order to assure correctness of the system’s functionality.

We also brought the best practices taken from the results of the SLR into action;
the study reported in [51] suggested having a test plan to go through the testing activity
more efficiently, we had our test plan to systematically develop the required testing
strategy as described in this chapter, which was integrated into our iterative development
practice. The iterative style of the development also leads into running the test cases often
as suggested in [88] to ensure the correctness of the system in each iteration.

Use of MVC architectural pattern as mentioned in Chapter 5 to introduce
testability was also beneficial, as it provides the possibility of testing the functionality of
the software independent from user interface. On the other side, further changes in the
interface, which may happen as the result of customizing the interface for new clients,
will not impact the core functionality of the system. This makes further testing and
maintenance easier. |
7.5 Chapter Summary

In this chapter, the testing methods and practice undertook in order to detect
system bugs and assuring the system correct functionality was discussed.-We employed
black box unit testing, to test the methods of mainController class actual output against

their expected output based on the function specifications. As a result, the source code

156
coverage was also reported. Also in order for testing the functionality of the system
through its GUI we used record and play back GUI testing method. We applied mutation
testing on the optimization formulation file, in order to fortify the sensitivity analysis
done by another member of our group. The summary of the lessons learned from testing
our system along with the lessons learned and best practices reported by other researchers
as applied to our case study, were presented.

Next Chapter will discuss several usage scenarios of the system. Some important

features and the commercialization of the system will also be discussed.

157

Chapter Eight: Operation and Usage

Software systems are typically developed to support the users in performing their
tasks more accurately and efficiently. Our pipeline operation system was primarily
planned to play a decision support system role in making important decision in the
pipeline operation.

In order to achieve this goal, we required to identify the scenarios for which the
system can potentially be beneficial. Following a Behavior-Driven development approach
[179], we first tried to understand in what situations the system is expected to be utilized
by our industrial partner, so that it can best serve their business needs. Then the focus of
the development, especially implementation of the features, will be on providing the
system with the features which are beneficial to the users in the identified usage
scenarios.

In Behaviour-Driven development, in order to identify the important scenarios of
the system usage, critical questions such as “What is the most important thing the system
should do?” or “Without using the system, where and what would be the biggest
impact?” are posed [179]. Investigating the answers f® such questions brings the insight
on the importance of the system and the identification of the situations where not having
the system may cause difficulties and challenges which can not be easily tackled.

As mentioned before, this system is developed with the objective of being used in
optimizing the pipeline operation. Through our meetings with our industrial partner, we
could identify every day concemns of the pipeline operators as well as the company

manager. These concemns mostly were related to the power consumption of the pump

158
stations and the operational speed of the variable speed pumps. We could address these
concerns by designing and integrating the visualization of the power consumptions for
each pump station and the pipeline network as a whole, as well as calculating and
demonstrating the pump speeds within a 24 hour operation period. The details of a group
of real world scenarios in which these features were found beneficial to the company will
be presented in this Chapter.

In this Chapter, first we introduce the system’s main features, which make it a
decision support system by discussing several usage scenarios in Section 8.1. Other
+features of the system, such as visualizing the pump speed optimal values and loading a
new pipeline are then briefly presented in Section 8.2 and Section 8.3.

In the figures in this chapter, the values and the station names (vertical and
horizontal axis labels) were made hidden intentionally to reépect the confidentiality of the
information belonging to our industrial partner.

8.1 Usage Scenarios

In this section we present three different situations where the use of the
optimization software is studied in order to help a pipeline operator in making decisions:

- Scenario 1: The impact of the delivery volume changes on the total power cost,

using the optimization charts,

- Scenario 2: The impact of replacing an existing pump with a new pump on the

total power cost,

- Scenario 3: The impact of changes in power rates and thresholds on the total

power cost.

159

These scenarios are designed to show that the developed application can be used
as an effective decision support system for the company operators or manager when
required to make important financial, practical and contractual decisions. This is done by
providing them with an effective visualization to demonstrate how changing different
factors may impact the total power cost.

In each of the scenarios described below, first the user should open the
optimization dialogue window, open the optimization file there, which consequently
opens the Lindo editing environment and changes the corresponding parameters in the
optimization file. Then Lindo the optimization file should be run once and based on the
new produced results the new optimization charts are generated and shown. The decision
can be made by comparing the resulting charts. All the charts shown below are snapshots
taken from the “charts” window of the application.

8.1.1 Scenario 1: The impact of the delivery volume changes on the total power cost,
using the optimization charts

In this scenario, the delivery volume contract is changed and the impact of the
changes is studied on the total power cost of the stations.

For example, let us assume the primary amount of volume contract is equal to
3,650 cubic meters based on the data taken from the company; the power consumption in
a period of working 24 hours in each station as well as the total amount of power
consumption is shown in Figure 45. The change in the power cost after decreasing the

volume to 3,000 cubic meters is shown in Figure 46.

160

Chart Type

© Powes Cost C Pump Spesd

- 1
Station Name ;Tolal i Operatoin

: Total Cost

Dollars

@ Optimisation
W SCADA

Figure 45: Total cost, default case

Total Cost

Dollars

@ Optimisation

M SCADA

W

$ % 8 % S W

Figure 46: Total cost after decreasing volume

161

The change in power cost after increasing the volume to 3800 cubic meters is

shown in Figure 47.

Total Cost

Dollars

B Optimisation

B SCADA

St 82 3% S 5 Twd

Figure 47: Total cost after increasing volume
As we have shown in the sample volumes above, the changes in volume will
result in proportional changes in power cost. It is worth noting here that there exists a
limited maximum allowable amount of volume in the pipeline under study which is
determined based on the length, diameter and other hydraulic characteristics of each
pipeline segment. If the volume amount is set to some values higher than this limit, no
optimal solution will be found. Please refer to [139] for more details.

8.1.2 Scenario 2: The impact of replacing an existing pump with a new pump on the
total power cost

This comparison can be used in a situation where the user wants to investigate

whether it is a cost-effective decision to replace an old pump with a new one or not.

162

Station Hourly Cost

Dollars

Dolars

8 Optimisatioron
8 Scads

Figure 48: The impact of changing first pump in S4 station on power cost (top)

before, (bottom) after replacing the pump with a pump similar to S2 pump station

163

Total Cost
.)
&
¥_{
- & SCADA
i o ' = Ontiessstion
S 2 3 % 5 T
Total Cost
: § i .
a
&

M SCADA
" Optimisation.

. o .

y s2 | X r 4 S5 | Toal
Figure 49: The impact of changing first pump in S4 station on other stations power
cost and total power cost (top) before, (bottom) after replacing the pump with a
pump similar to S2 pump station

As shown in Figure 48 and Figure 49, replacing the first pump in S4 station with
another pump similar to that of S2 station will result in an increase in total pipeline power
cost as well as an increase to power cost of S1 and S2 stations while we notice a decrease
in the power cost of the S4 station itself. Interested reader can refer to [139] for more

information about the details of pump parameters and how they are calculated and being

used in the optimization objective function.

164

8.1.3 Scenario 3: The impact of changes in power rates and thresholds on the total
power cost

Sometimes changes in power rates or power rate thresholds may result in dramatic
changes in the total resulting power cost. By comparing the final effect of such changes
in different situations, the user can decide better about the rates while negotiating for a
new power contract. In the situation shown in Figure 50, the amount of power cost

increase after doubling power rates for S1 station is demonstrated for different hours

during the day.
Station Hourly Cost
4
i
8
g
a4
8 8 Optimisation
% 5cada

W3 R ————

2 -
T 2T ¥ 85222288 %%
FIXXXrIIrIIrrIIzcx
Hours

Figure 50: S1 station power cost (top) with default power rates, (bottom) after

doubling power rates

165
The impact of this increase on the total power cost is demonstrated in Figure 51. |
As shown in the figure, the increase not only affect the total power cost of the S1 station,
but also it resulted in an increase in total power cost of the neighbour station, S2, which

resulted in the total power cost of the whole pipeline.

Total Cost
[
a
8
B Optimisation
B SCADA
SI 52 S3 S& 35 Twal
Total Cost
[
a2
8
B Optimisation
M SCADA

Figure 51: Impact of total power cost (top) before, (bottom) after doubling

S1 station power rates

166
8.2 Speed Charts
As mentioned before, the pipeline operation optimization problem aims at finding
the optimal pipeline setting under which the pipeline is operated at minimum cost. After
this setting is found, the operator applies the proposed setting to the pipeline. This is
achieved mainly by either turning on/off a certain pump or running the variable speed

pumps with a target speed at certain hours.

Chast Type

) Power Cost & Pump Speed

Station Hourly Pump Speed

B Optimization
WSCADA

Figure 52: Sample speed chart

As the optimization solver does not directly provide the optimal operation values
for pump speeds, another student of our research group, extracted the formula by which
the pump speed is calculated using the optimal values found for pump head, flow rate and

the coefficients of the pump. Employing that formula, our system finds the optimal speed

167
and provides the operator with the target operating pump speed in different hours
throughout the faeriod optimization is performed. These‘ values can be viewed in the
charts form, by selecting the chart type as “Pump Speed”. A snapshot of the optimal
speed values calculated for a pump station is shown in Figure 52. These values are shown
against the data taken from SCADA system.

8.3 Loading a New Pipeline

One of the features provided by our system is that the user can load different
pipelines to the system. As a result, all of the corresponding parameters and files are
updated and the new schematic pipeline can be browsed in Google Earth.

Besides the pipeline operated by our induétn’al partner, we designed a sample
pipeline in order for presenting the scenario of loading a new pipeline in the system. This
test pipeline includes 3 variable speed pumps as shown in Figure 53.

The system updates the corresponding parameters based on the values provided in
the XML file loaded to the system as mentioned before. Thus, in order to successfully
load a new pipeline, the corresponding XML file should contain all the required values.
These values include:

- KML file path, containing the geographical profile of the pipeline

element, such as valves and stations,

- Optir;xization formulation file path, containing optimization parameters,
such as the pipeline hydraulic characteristics and other operational
constraints,

- SCADA data files path, if such data exists,

- Pump coefficients for calculating speed, if the pump is variable speed.

168

Figure 53: Pembina pipeline (top), hypothetical pipeline (bottom)

169
8.4 Commercialization of the system

Optimizing pipeline operation is considered one of the important problems of the
pipeline operators, as it can significantly impact the amount of their profit. Similar to our
industrial partner, other pipeline operator companies can potentially be interested in
utilising a software system, which can help them optimize and improve their operational
routines. As the application is developed with the primary goal of prdviding the pipeline
operators with the optimized pipeline configuration, we were interested in
commercializing the software to have the opportunity of collaborating with more
industrial partners. This collaboration can also aid us to make the software a better fit for
the needs of the industry, by being presented to particular demands of different
companies.

This also can introduce new challenges in the deployment of engineering software
for the oil industry, which can be published in academia to be available for other
researchers in similar context.

With having these in mind, in May 2011 we started to commercialize the
application with the help of a business partner. The business partner is responsible to
identify potential industrial partners and build the ground for presenting the application.
The demo of the application was built and recently presented to several companies in
Calgary, who showed initial interest in collaboration. The follow up meetings with these
companies is being planned and after finalizing the details of the collaboration, the

software will be customized accordingly to meet their needs.

170
8.5 Chapter Summary

In this chapter, the usage scenarios of the system were presented to provide some
insight on how the developed software can assist the operators and managers in making
the right decisions. The impact of pipeline parameters changes, such as delivery volume
and power rates, on the total operation cost were discussed. Besides the mentioned
parameters, other parameters of the pipeline formulation file can be altered as required
and the resulting impact can be visualised and studied using the charting utility integrated
to the system.

Speed charts, providing operational pump speed values to the user for operating
the pipeline with optimized configuration were presented. Loading a new pipeline, which
is another feature of the developed system, were also introduced in this chapter.

Next Chapter provides the summary, conclusions and future directions of this

thesis.

171

Chapter Nine: Summary, Conclusions and Future Works
This chapter summarizes and concludes the thesis. The summary of the thesis is
presente:i in Section 9.1, followed by the concluding remarks in Section 9.2 and
suggestions on the potential research trends in the future to follow up this work,

presented in Section 9.3.
9.1 Summary

This thesis included two major components. (1) The SLR on software engineering
for SES software development and, (2) the experiences in building an engineering
software in which the ideas inspired from the SLR were applied. The SLR aimed at
assessing the state of the art and practice in software engineering for SES development
and in particular identifies weaknesses and strengths, highlights challenges and finds
potential future research trends from the perspective of developers, researchers and
scientists. The case study aimed at developing an industrial pipeline operation
optimization software and decision support system.

In order to provide the ground for conducting this study, in Chapter 2, the
background on software engineering practices and previous publications in the field were
presented. Also, a group of common software systems from the oil industry family were
introduced.

In Chapter 3, we presented the steps taken to conduct the SLR and systematic
mapping on software engineering for SES development. SLRs were mentioned in the
literature to be one of the very common types of EBSE providing valuable information

for scientists and practitioners, which are methodical, comprehensive and organized

172
reviews about the state of the art in a particular domain and about a certain subject.
Systematic mappings were also identified as a proper starting point for more detailed
studies as they categorize different types of primary studies and give summary of the
results.

A standard methodology for conducting systematic literature reviews was
employed using the well-known digital libraries in the field and the relevant information
from the publications based on a group of research questions were extracted and
integrated, forming the main part of the review protocol. The best practices reported in
literature were identified as applicable to various problem domains.

In Chapter 4, in the process of developing our industrial engineering software for
the optimization of oil pipeline operation, as a part a major ongoing research project, we
brought the insights taken from systematic literature review into practice. In the case
study we conducted, as a second goal, we aimed at testifying the challenges of SES
development and to verify the applicability of the best practices, investigate their
adaptability and validate the solutions reported, where relevant. This industrial
collaboration built the ground to enhance the quality and reliability of the end product
while optimized the cost and time issues by providing us with the highlights on the
po;ential bottlenecks and available solutions upfront.

The main goal of the case study was the development of the engineering software
and decision support system to provide the optimal operation scheduling for the operators
as well as the possibility to visually inspect the pipeline important variables such as total
power consumption, power cost for each of the stations and the pump speeds in variable

speed pump stations. In the beginning of the project, the domain terminology were

173
identified to efficiently communicate with the domain experts and to understand the
pipeline system basics. This terminology includes the definition of pipeline elements such
as valves, pumps, and pump stations which are the main components of each pipeline
system. These elements were represented in the optimization formulation script by certain
variables (devised by another student in SoftQual research group). The optimization
objective, which is the minimization of the pipeline operation cost, was solved by the
commercial solver embedded in the application. Also as mentioned before as a second
goal by building this engineering software, we aimed at applying the ideas inspired by the
SLR.

In Chapter 5, the oil pipeline operation application requirements were presented
as well as the analysis and design documents used in designing the system. We adopted
object-oriented methodology for developing this system. System actors, use-case diagram
and activity diagrams such as calling the optimization solver, viewing charts and loading
a new pipeline were presented. MVC architectural pattern was adopted in order to
support testability and maintainability besides better managing different levels of the
application. Different elements of the system based on MVC architecture, which include
the system entities, controllers such as optimization controller and application views
which are different windows of the system were tabulated and described.

In Chapter 6, the iterative development process used to develop the system was
introduced. Dependency analysis, in order to extract the dependencies among the system
artefacts, was performed. This analysis identifies the highly dependent elements, whish
later gives the developer a precise idea about the element relationships, and is helpful

when any artefact of the application is required to be re-used, upgraded or replaced. Some

174
of the application metrics such as lines of code, IL instructions and cyclomatic
complexity was calculated and reported followed by presenting selected dependency
graphs.

In Chapter 7, the testing practices undertook in order to detect system defects and
assuring the system correct functionality was discussed. Black box unit testing was
employed. The source code symbol and branch coverage values were also reported. In
order for testing the functionality of the system through its GUI, record and play back
GUI testing method was used. As the last section in that chapter, mutation testing was
applied on the optimization formulation script, in order to fortify the sensitivity analysis
done by another member of SoftQual research group.

In Chapter 8, the usage scenarios of the system were presented to provide insight
on how the developed software can assist the operators and managers in making the right
decisions. The impact of pipeline parameters changes, such as delivery volume and
vpower rates, on the total operation cost were discussed. Speed charts, providing
operational pump speed values to the pipeline operator for operating the pipeline with
optimized configuration were presented. Loading a new pipeline, which is another feature
of the developed system, was also introduced in that chapter.

9.2 Conclusions

Software systems are one of (if not) the most critical parts of any modern system
(e.g., scientific, engineering, health-care, and military). Traditionally, scientists and
engineers have used ad-hoc programrﬁing and software development techniques (e.g.,
code and debug) to develop their required software systems. However, with advances in

different areas of software engineering, more and more software engineering concepts,

175
tools and methodologies are being adopted and used by scientists and engineers in their
software development tasks.

We aimed at providing a comprehensive background on identifying major issues
in software engineering for SES. By conducting a systematic literature review, we aimed
to systematically extracting available insights and inspirations from the literature and to
come up with a structured guideline on how to improve the whole development process
of SES.

By systematically reviewing and categorizing 83 selected papers in the area
published from 1980 to 2010, we were able to extract and report interesting information
about how SES is being developed in various domains. The demographic data presented
provide interesting insights about the research, researchers and domains of SES projects.

We found the trend of the publications to be increasing between 1980 and 2010.
This shows that this area in recent years is gaining more attentions. By extracting the
breakdown of research affiliates in this field, we found that not surprisingly the university
is the lead in publishing on SES development followed by research groups which conduct
collaborative works among the university and private sector. Other publications are
coming from research groups affiliated with the government. All of these groups are
increasing their publications in the recent years.

Physics and biology are two domains from which we had most of the
publications, as these two disciplines require software for dealing with their complex

simulations and modeling.

176

Most of the publications were focused on design, architecture, testing and
context-dependent methodologies and solutions to deal with the complexities and
challenges of developing SES.

By conducting the SLR we could characterize SES as a type of software which
has four main differences from commercial software. First, finalizing the requirements in
SES development is not practical and possible, as in most cases the goal of developing
the software is to find the solution to a problem for which no prior solution exists. Thus,
the requirement elicitation will remain an ongoing process throughout the life cycle of the
software. Actually developing working software quickly, is reported in the literature to be
a treatment for extracting the requirements more precisely at the later stages of the
development.

Second, as the main objective of developing SES is to provide a correct and
reliable code which can be utilized to improve the target science or engineering
discipline. As a result, the factor of building a working system in the shortest amount of
time outweighs adopting rigorous software engineering practices to ensure the quality of
end product. This is shown in the literature to be the main reason of ignoring most of the
beneficial practices in software engineering, such as considering testability, reusability
and maintainability in the design of SES.

Third, the developers of SES are mostly domain experts (i.e. scientists and
engineers). Not surprisingly, they are not academically trained to develop software
similar to software engineers. This makes adopting software engineering practices more

challenging for the domain experts.

177

Finally, testing SES has two independent stages of verification and validation.
First stage is testing the scientific/engineering core for which usually no certain test
oracle exists. This in particular is a very context-dependent and challenging practice.
Second stage is testing the software that provides access to that scientific/engineering
core, and can be performed following the common testing practices.

The mentioned characteristics often introduce certain challenges in the
development of SES, which we aggregated besides the solutions provided, if any. These
challenges reported in the thesis also suggest the area of improvement and further
research for future projects in different context. The extent of the match between reality
of SES development and what is expected to be followed as suggested by the software
engineering methodologies show the current state of the art and gives a glimpse of what
is happening in practice.

We were able to identify best practices to give practical insights to the developers
who want to take the advantages of previous experiences and to adopt applicable
guidelines suggested by other developers in their own practice. Strengths and weaknesses
reported in the publications may pave the way for conducting a careful and precise
development practice. Upcoming trends in SES development propose the areas of
investments for further research and practice. |

By developing industrial engineering software, we experienced the particular
challenges of this field and tried the practicality of the proposed solutions to improve the
development process besides enhancing the quality of the end product. We concluded
that developing SES is different from conventional software development in practices

mostly because its primary aim is to help the scientists and engineers better understand,

178

analyze and resolve their domain issues and thus is highly tied with the knowledge and

expertise of scientists as the real owners of the software.

Our case study confirmed the observations reported by other practitioners in

different stages of the development, such as the difficulty of requirement elicitation and

the complexity of the testing. Although we aimed at developing software for pipeline

operation optimization, we had to deal with two segments in the system: the engineering

core responsible for finding the optimal operation settings and the software which was

developed to utilize the engineering core and provide the decision support facilities. We

could follow software engineering practices to facilitate the challenges of the interface

software, as shown in Table 29. However, certain challenges of designing, implementing

and testing the engineering core could not be resolved by following common software

engineering practices.

Challenge Solutions adopted for developing | Solutions adopted for developing the
the engineering core software interface
Requirement Frequent meetings with domain | -Meetings with the domain experts to
elicitation expert, to learn the domain | understand how the software will be
expertise and verify understanding | utilized
of the optimization problem -Adopting iterative development
approach
Design OO technology and MVC architectural
pattern
Implementation | Using Lingo for implementing | Using Visual studio 2008 integration
MILP technique environment and C# language for coding |
Testing - Sensitivity analysis - Unit testing
- Solving the optimization problem | - GUI testing
using genetic algorithm
Maintenance Dependency analysis

Table 29: Summarizing the solutions adopted for developing the engineering core

and solutions adopted for the software interface

179

It is worth mentioning that the solutions summarized in the second column of the
table is reported based on the experience of another member of our research group, who
was in charge of developing the optimization module (i.e. engineering core).

To conclude we need to emphasize that without having proper understanding of
the domain and without tightly interacting and communicating with domain experts and
scientists, the scientific software development would not be a reliable and precise
practice. A lot of practical work has been done and evaluated by experts for improving
the practice of developing SES to ensure the reliability and robustness of the end product,
yet there exists certain challenges which need to be addressed.

9.3 Future Works

Using the results we have gained from the systematic literature review, we plan to
conduct surveys with practitioner SES developers to solicit the latest trends, challenges
and needs in those communities to and to identify more practical and empirical evidence
from other ongoing projects.

While searching to collect our primary studies, we found several insightful books
on the topic, that we did not include in this study. We plan to extend the scope of our
study by considering the related books at a later stage of this research.

Considering the reasonable trade-off between the required time and effort on one
side and the completeness of the results on the other side, we did not include in our
search keywords the domain names of scientific and engineering disciplines. Thus some
of the domain-specific publications may exist, which are not currently included in the
SLR. We plan to expand our search keywords to find and include such papers in the SLR

at a later stage.

180

In the software application developed, we plan to integrate a database
management system, instead of using text files, in order to manage the historical data
taken from industry and the data generated by the optimization engine in a much more
efficient manner.

In order to improve the efficiency and to minimize the operation cost of oil
distribution systems, other features, such as batch-scheduling optimization and reduction
of pump maintenance costs can be added to the system based on the demand taken from
other potential industrial partners. Also in the optimization module, software engineering
aspects such as maintainability and readability can be improved.

As the system was developed as a sample of a SES in this study, the main focus
has been given to the proper design and correct functionality of the system by following
standard software engineering practices, thus the usability and user-friendliness of the
system through its GUI can be further enhanced and customized based on the ideas taken

from particular companies which will utilize the software in real practices.

181

References

(1] "Software Horror Stories," in http.//www.cs.tau.ac.il/~nachumd/horror.html, Last
accessed: July 2010.

(2] "Toyota's lesson: Software can be unsafe at any speed," in

htip://blogs.computerworld.com/15547/toyotas_lesson_software _can_be_unsafe
at_any_speed, Last accessed: July 2010.

(3] D. F. Kelly, "A Software Chasm: Software Engineering and Scientific
Computing," IEEE Software, vol. 24, no. 6, pp. 118-119, 2007.

[4] G. Wilson, "Those who will not learn from history," Computing in Science and
Engineering, vol. 10, no. 3, pp. 5-6, 2008.

{5] G. V. Wilson, "Where's the real bottleneck in scientific computing?,” American
Scientist, vol. 94, no. 1, pp. 5, 2006.

{6] J. Segal, "Models of scientific software development,” in Workshop on Software
Engineering in Computational Science and Engineering, 2008.

[7] J. F. Cremer, R. S. Palmer, and R. E. Zippel, "Creating scientific software,"
Transactions of the Society for Computer Simulation International, vol. 14, no. 1,
pp. 37 - 49, 1997.

[8] J. Segal, "Scientists and software engineers: A tale of two cultures,"” in
Psychology of Programming Interest Group, 2008.

[9] B. Boehm, "Managing Software Productivity and Reuse," in Computer Physics
Communications. vol. 32, 1999.

[10] S. M. Easterbrook and T. C. Johns, "Engineering the Software for Understanding
Climate Change," Computing in Science and Engineering, vol. 11, no. 6, pp. 65-
74, 2009.

[11] "Reservoir Engineering Software and Services," in Attp./www.fekete.com, Last
accessed: July 2010.

(12] "Energy Solution International,” in Atip.//www.energy-solutions.com/, Last
accessed: July 2010.

[13] "Engineering Software Center," in Attp:-//www.engsoftwarecenter.com/, Last
accessed: July 2010.

[14] "Intuitive Software for Structural Engineering," in Attp.//www.iesweb.com/, Last
accessed: July 2010.

[15] "Workshop on Software Engineering in Health Care," in Attp.//iwvww-
swe.informatik.uni-heidelberg.de/sehc09/index.htm, Last accessed: July 2010.

[16] "International Workshop on Aerospace Software Engineering,” in

http.//crisys.cs.umn.edu/icse-workshop/Program.htm, Last accessed: July 2010.

(17] "International Workshop on Software Engineering for Computational Science and
Engineering,” in http.//www.cs. ua.eduw/~SECSE 10, Last accessed: July 2010.

[18] "Workshop on Software Research and Climate Change " in
http:/fwww.cs.toronto.edu/wsrcc/, Last accessed: July 2010.

[19] "Workshop on Software Engineering for Automotive Systems " in
http_/Awww.inf.ethz.ch/personal/pretscha/events/seas07/, Last accessed: July
2010.

http://www.cs
http://bloss.computerworld.com/15547/tovotas
http://www.enssoftwarecenter.com/
http://www-
http://www.cs.ua.edu/~SECSE
http://www
http://www.inf.ethz.ch/personal/pretscha/events/seas07/

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
(29]

[30]

[31]

[32]
(33]

(34]

[35]

182

J. segal, "Some Problems of Professional End User Developers," in JEEE
Symposium on Visual Languages and Human-Centric Computing, 2007.

B. Kitchenham and S. Charters, "Guidelines for Performing Systematic Literature
Reviews in Software engineering," in Evidence-Based Software Engineering,
2007.

B. Kitchenham, P. Breretona, D. Budgenb, M. Turnera, J. Baileyb, and S.
Linkmana, "Systematic literature reviews in software engineering—A systematic
literature,” Information and Software Technology, vol. 51, no. 1, pp. 7-15, 2009.
J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, "Software Development
Environments for Scientific and Engineering Software: A Series of Case Studies,"
in International conference on Software Engineering, 2007, pp. 550-559.

L. Hochstein and V. R. Basili, "The ASC-Alliance Projects: A Case Study of
Large-Scale Parallel Scientific Code Development,” Computer, vol. 41, no. 3, pp.
50-58, 2008.

S. Smith, "Systematic Development of Requirements Documentation for General
Purpose Scientific Computing Software," in IEEE International Requirement
Engineering Conference, 2006.

J. Tang, "Developing scientific computing software, current processes and future
directions," Master thesis, McMaster university, 2009.

"The R Project for Statistical Computing,” in http./www.r-project.org/, Last
accessed: April 2011.

"Gretl," in http://gretl. sourceforge.net/, Last accessed: July 2010.

R. Kendall, J. C. Carver, D. Fisher, D. H. A. Mark, D. Post, C. E. R. Jr, and S.
Squires, "Development of a Weather Forecasting Code: A Case Study,” IEEE
Software, vol. 25, no. 4, pp. 59-65, 2008.

S. Kumar, K. Tamura, and M. Nei, "MEGA3: Integrated software for Molecular
Evolutionary Genetics Analysis and sequence alignment,” Briefings in
Bioinformatics vol. 5, no. 2, pp. 150-163, 2004.

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B.
Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hormik, T. Hothorn, W. Huber, S. Iacus, R.
Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G.
Smyth, L. Tiemey, J. Y. Yang, and J. Zhang, "Bioconductor: open software
development for computational biology and bioinformatics," Genome biology,
vol. 5, no. 10, pp. R80, 2004.

J. C. Nelson, "QGENE: software for marker-based genomic analysis and
breeding," Molecular Breeding, vol. 3, no. 1, pp. 239-245, 1997.

J. Segal and C. Morris, "Developing Scientific Software," IEEE Software, vol. 25,
no. 4, pp. 18-20, 2008.

Basili, V. R. Carver, J. C. Cruzes, D. Hochstein, L. M. Hollingsworth, J. K. Shull,
F. Zelkowitz, and M.V, "Understanding the High-Performance-Computing
Community:A Software Engineer’s Perspective,” IEEE Software, vol. 25, no. 4,
pp. 29-36, 2008.

P. K. Chilana, C. L. P, and A. J. Ko, "Comparing Bioinformatics Software
Development by Computer Scientists and Biologists: An Exploratory Study," in

http://www.r-vroiect.ore/
http://sretl.sourceforee.net/

[36]

(37}

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

183

Workshop on Software Engineering for Computational Science and Engineering,
2009.

V. Maxville, "Preparing Scientists for Scalable Software Development,” in
Workshop on Software Engineering for Computational Science and Engineering,
2009.

Okoli C. and S. K., "A Guide to Conducting a Systematic Literature Review of
Information Systems Research,” Working Papers on Information Systems, vol.
10, no. 26, pp. 2010. B

A. Fink, Conducting research literature reviews: from the Internet to paper: Sage
Publications Ltd., 2005.

B. Kitchenham, P. Brereton, and D. Budgen, "The Educational Value of Mapping
Studies of Software Engineering Literature," in ACM/IEEE Conference on
Software Engineering, 2010.

Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen, "Evidence-Based
Software Engineering," in International Conference on Software Engineering,
2004.

D. S. Cruzes and T. Dyb4, "Synthesizing evidence in software engineering
research," in ACM-IEEE Symposium on Empirical Software Engineering and
Measurement, 2010.

S. E. Campbell, D. G. Seymour, and W. R. Primrose, "A systematic literature
review of factors affecting outcome in older medical patients admitted to
hospital," Age and Ageing, vol. 33, no. 1, pp. 110-115, 2004.

Pittaway, Luke, Robertson, Maxine, Munir, Kamal, Denyer, David, Neely, and A.
D, "Networking and Innovation: A Systematic Review of the Evidence,"
International Journal of Management Reviews, vol. 5, no. 3, pp. 137-168, 2004.
T. Baines, H. Lightfoot, G. M. Williams, and R. Greenough, "State of the art in
lean design engineering: a literature review on white collar lean," Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, vol. 220, no. 9, pp. 1539-1547, 2006.

S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-based Test-Case
Generation," in IEEE Transactions on Software Engineering, 2009.

M. Harman, S. A. Mansouri, and Y. Zhang, "Search Based Software Engineering:
A Comprehensive Analysis and Review of Trends Techniques and Applications,"
in Department of Computer Science King's College London, Technical Report
TR-09-03, 2009.

E. Engstrém, P. Runeson, and M. Skoglund, "A systematic review on regression
test selection techniques," Information and Software Technology, vol. 52, no. 1,
pp. 14-30, 2010.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic Mapping Studies
in Software engineering," in Conference on Evaluation and Assessment in
Software Engineering, 2008, pp. 71-80.

D. Feitosa, K. R. Felizardo, L. B. R. d. Oliveira, D. Wolf, and E. Y. Nakagawa,
"Software Engineering in the Embedded Software and Mobile Robot Software

[50]
[51]
[52]
[53]

[54]
[55]

(56]

[57]

(58]
(59]
[60]

[61]

[62]

[63]
[64]

[65]

184

Development: A Systematic Mapping," in International Conference on Software
Engineering and Knowledge Engineering, 2010.

J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson,
"How Do Scientists Develop and Use Scientific Software?," in Workshop on
Software Engineering for Computational Science and Engineering, 2009, pp. 1-8.
C. Greenough and D. J. Worth, "Computational science and engineering
department software development best practice,” in Technical report ral-tr-2008-
022, SFTC Rutherford AppletonLaboratory, 2008

"SCHEDULE++ PIPELINE&PORT," in

http /iwww.oilindustryscheduling. com/pipeline_port.html, Last accessed: April
2011

"Planning, Scheduling and Blending Optimization Software," in
http://www.m3tch.com/simto-products. html, Last accessed: April 2011.

"PEDL" in http.//www.ssischeduling.com/, Last accessed: April 2011.
"H/SCHED.," in http.//www. haverly.com/OmniSuite htin, Last accessed: April
2011.

"High Performance SAP-Primavera Integration - Pipeline,” in
www.pipelinesoftware.com/psi/pipeline_p3e. jsp, last accessed: April 2011

V. Garousi and T. Varma, "A Bibliometric Assessment of Canadian Software
Engineering Scholars and Institutions (1996-2006)," Canadian Journal on
Computer and Information Science, vol. 3, no. 2, pp. 19-29, 2010.

Y. Jia and M. Harman, "An Analysis and Survey of the Development of Mutation
Testing," in JEEE Transactions on Software Engineering, 2010.

R. L. Glass, "An assessment of systems and software engineering scholars and
institutions," Journal of Systems and Software, vol. 27, no. 1, pp. 63-67, 1994,

G. Wilson, "Software carpentry " Computing in science and engineering, vol. 8,
no. 6, pp. 66-69, 2006.

b. M. B. Blake, "A Student-Enacted Simulation Approach to Software
Engineering Education," IEEE Transactions on Education, vol. 46, no. pp. 124-
132, 2001.

O. Bilhan, M. E. Emiroglu, and O. Kisi, "Application of two different neural
network techniques to lateral outflow over rectangular side weirs located on a
straight channel,” Advances in Engineering Software, vol. 41, no. 6, pp. 831-837,
2010.

K. L. Heninger, "Specifying Software Requirements for Complex Systems: New
Techniques and Their Application,” IEEE Transactions on Software Engineering,
, vol. 6, no. 1, pp. 2-13, 1980.

J. Segal, A. Grinyer, and H. Sharp, "The type of evidence produced by empirical
software engineers," in Workshop on Realising Evidence-based Software
Engineering, 2005.

M. Rodgers, A. Sowden, M. Petticrew, L. Arai, H. Roberts, N. Britten, and J.
Popay, "Testing Methodological Guidance on the Conduct of Narrative Synthesis
in Systematic Reviews," Evaluation, vol. 15, no. 1, pp. 49-74, 2009.

http://www.oiVmdustrvschedulmQ.com/DiDeline
http://www
http://www.ssischedulinQ.com/
http://www.haverly.com/OmniSuite.htm
http://www.DiDelinesofrware.com/Dsi/DiDelwe

[66]

[67]

[68]

[69]

(70]

[71]

[72]
[73]

(74]

[75]

[76]
(77}
[78]
[79]

[80]

(81}

185

M. E. Larsson and P. A. Laplante, "On the Complexity of Design in Imaging
Software," in IEEE International Conference on Engineering of Complex
Computer Systems, 2006, pp. 37 - 46.

A. Spinelli, P. Salvaneschi, M. Cadei, and M. Rocca, "MI—an object oriented
environment for integration of scientific applications,” in Conference on Object-
oriented programming systems, language and applications, 1994, pp. 212 - 222.
S. Smith and W. Yu, "A document driven methodology for developing a high
quality Parallel Mesh Generation Toolbox," Advances in Engineering Software,
vol. 40, no. 11, pp. 1155-1167, 2009.

S. F. Siegel and L. F. Rossi, "Analyzing BlobFlow: A Case Study Using Model
Checking to Verify Parallel Scientific Software," Recent advances in parallel
virtual machine and message passing interface, vol. 5205, no. 1, pp. 274-282,
2008.

D. Kelly and R. Sanders, "Assessing the quality of scientific software," in
Workshop on Software Engineering for Computational Science & Engineering,
2008.

J. R. Cary, S. G. Shasharina, J. C. Cummings, J. V. W. Reynders, and P. J.
Hinker, "Comparison of C++ and Fortran 90 for object-oriented scientific
programming," Computer Physics Communications, vol. 105, no. 1, pp. 20-36,
1997.

T. L. Veldhuizen and M. E. Jernigan, "Will C++ be faster than Fortran?," in
Scientific Computing in Object-Oriented Parallel Environments, 1997, pp. 49-56.
T. Veldhuizen, "Scientific Computing: C++ Versus Fortran," in
http:/fwww.drdobbs.com/184410313, Last accessed: Aprill 2011,

D. Kelly, D. Hook, and R. Sanders, "Five Recommended Practices for
Computational Scientists Who Write Software," Computing in Science and
Engineering, vol. 11, no. 5, pp. 48-53, 2009.

D. Hook and D. Kelly, "Testing for trustworthiness in scientific software,” in
Workshop on Software Engineering for Computational Science and Engineering,
2009, pp. 59-64.

D. Hook and D. Kelly, "Mutation Sensitivity Testing," IEEE Design & Test, vol.
11, no. 6, pp. 40-47, 2009.

R. Sanders and D. Kelly, "The Challenge of Testing Scientific Software," in
Conference for the Association for Software Testing, 2008.

R. Sanders and D. Kelly, "Dealing with Risk in Scientific Software
Development," IEEE Software, vol. 25, no. 4, pp. 21-28, 2008.

J. Segal, "When Software Engineers Met Research Scientists: A Case Study,"
Empirical Software Engineering, vol. 10, no. 1, pp. 517-536, 2005.

J. Segal, "Some challenges facing software engineers developing software for
scientists,” in Workshop on Software Engineering for Computational Science and
Engineering, 2009.

J. Segal, "Software Development Cultures and Cooperation Problems: A Field
Study of the Early Stages of Development of Software for a Scientific
Community," Computer Supported Cooperative Work, vol. 18, no. 5-6, pp. 581—
606, 2009.

(82]
(83]
[84]

[85]

[86]

(87]

[88]

(89]

[90]

[91]

[92]

[93]

(94]

[95]

[96]

[97]

186

R. Kendall, D. Post,and J. I. ¢. S. D. L. I. C. S. Andrew Mark "Case Study of the
NENE Code Project,” IEEE Design & Test vol. 12, no. 3, pp. 28-33, 2010.

S. L. Eddins, "Automated Software Testing for Matlab," Computing in Science
and Engineering, vol. 11, no. 6, pp. 48-55, 2009.

D. Hook, "Using code mutation to study code faults in scientific software,"
Master's thesis, Queen's University, 2009.

K. Frounchi, L. C. Briand, L. Grady, Y. Labiche, and R. Subramanyan,
"Automating Image Segmentation Verification and Validation by Learning Test
Oracles," in Carleton University, Technical Report SCE-09-06, 2009.

C. A. Crabtree, A. G. Koru, C. Seaman, and H. Erdogmus, "An Empirical
Characterization of Scientific Software Development Projects According to the
Boehm and Tumner Model: a Progress Report,” in Workshop on Software
Engineering for Computational Science and Engineering, 2009.

R. A. Bartlett, "Integration strategies for Computational Science & Engineering
software," in Workshop on Software Engineering for Computational Science and
Engineering, 2009, pp. 35-42.

M. A. Heroux and J. M. Willenbring, "Barely Sufficient Software Engineering:10
Practices to Improve Your CSE Software,"” in Workshop on Software Engineering
Jor Computational Science and Engineering, 2009.

C. Macaulay, D. Sloan, X. Jiang, P. Forbes, S. Loynton, J. R. Swedlow, and P.
Gregor, "Usability and User-Centered Design in Scientific Software
Development,” IEEE Software, vol. 26, no. 1, pp. 96-102, 2009.

D. D. Roure and C. Goble, "Software design for empowering scientists,”" IEEE
Computer Society, vol. 26, no. 1, pp. 88 - 95, 2009.

G. Fischer, K. Nakakoji, and Y. Ye, "Metadesign: Guidelines for Supporting
Domain Experts in Software Development," IEEE Software, vol. 26, no. 5, pp.
37-44, 2009.

D. Woollard, C. Mattmann, and N. Medvidovic, "Injecting Software Architectural
Constraints into Legacy Scientific Applications," in Workshop on Software
Engineering for Computational Science and Engineering, 2009, pp. 65-71.

R. Arora, P. Bangalore, and M. Mernik, "Developing Scientific Applications
Using Generative Programming,” in Workshop on Software Engineering for
Computational Science and Engineering, 2009, pp. 51-58.

D. Woollard, N. Medvidovic, Y. Gil, and C. A. Mattmann, "Scientific Software as
Workflows: From Discovery to Distribution," IEEE Software, vol. 25, no. 4, pp.
37-43, 2008.

K. S. Ackroyd, S. H. Kinder, G. R. Mant, M. C. Miller, C. A. Ramsdale, and P. C.
Stephenson, "Scientific Software Development at a Research Facility," IEEE
Software, vol. 25, no. 4, pp. 44-51, 2008.

M. Vigder, N. G. Vinson, J. Singer, D. Stewart, and K. Mews, "Supporting
Scientists’ Everyday Work: Automating Sc1ent1ﬁc Workflows," IEEE Software,
vol. 25, no. 4, pp. 52-58, 2008.

S. A. Vilkomir, W. T. Swain, J. H. Poore, and K. T. Clamo, "Modeling Input
Space for Testing Scientific Computational Software: A Case Study," in
International conference on Computational Science, 2008, pp. 291 - 300.

[98]

[99]
[100]

[101]

[102]
[103]
[104]

[105]

[106]
[107]

[108]

[109]
[110]
[111]

[112]

187

J. P. Kenny, C. L. Janssen, M. S. Gordon, M. Sosonkina, and T. L. Windus, "A
component approach to collaborative scientific software development: Tools and
techniques utilized by the Quantum Chemistry Science Application Partnership,”
Scientific Programming, vol. 16, no. 4, pp. 287-296, 2008.

B. A. Allan, B. Norris, W. R. Elwasif, and R. C. Armstrong, "Managing scientific
software complexity with Bocca and CCA," Scientific Programming vol. 16, no.
4, pp. 315-327, 2008.

J. C. Carver, "Post-Workshop Report for the Third International Workshop on
Software Engineering for High Performance Computing Applications,” Sigsoft
Software Eng. Notes, vol. 32, no. 5, pp. 38-43, 2007.

R. P. Kendall, D. E. Post, J. C. Carver, D. B. Henderson, and D. A. Fisher, "A
Proposed Taxonomy for Software Development Risks for High-Performance
Computing (HPC) Scientific/Engineering Applications," Technical report
CMU/SEI-2006-TN-039, Carnegie Mellon 2007.

S. Smith, L. Lai, and R. Khedri, "Requirements Analysis for Engineering
Computation: A Systematic Approach for Improving Reliability,"” Reliable
Computing vol. 13, no. 1, pp. 83-107, 2007.

S. Baxter, S. W. Day, J. S. Fetrow, and S. J. Reisinger, "Scientific Software
Development Is Not an Oxymoron," PLoS Computational Biology, vol. 2, no. 9,
pp- 87, 2006.

D. W. Kane, M. M. Hohman, E. G. Cerami, M. W, Mccormick, K. F. Kuhlmman,
and J. A. Byrd, "Agile methods in biomedical software development: a multi-site
experience report," in Bioinformatics, 2006.

M. Broy, "Challenges in Automotive Software Engineering," in International
conference on Software engineering, 2006, pp. 33 - 42.

C. E. Rasmussen, M. J. Sottile, S. S. Shende, and A. D. Malony, "Bridging the
language gap in scientific computing: the Chasm approach," Concurrency and
computation: practice and experience, vol. 18, no. 1, pp. 151-162, 2006.

D. Kane, "Introducing Agile Development into Bioinformatics: An Experience
Report," in Proceedings of the Conference on Agile Development, 2003, pp. 132-
140.

W. A. Wood and W. L. Kleb, "Exploring XP for Scientific Research," IEEE
Software, vol. 20, no. 3, pp. 30-36, 2003.

E. Houstis, E. Gallopoulos, R. Bramley, and J. Rice, "Problem-Solving
Environments for Computational Science,”" IEEE Computational Science &
Engineering, vol. 4, no. 3, pp. 18 - 21, 1997.

A. Dall’Osso, "Using computer algebra systems in the development of scientific
computer codes," Future Generation Computer Systems, vol. 19, no. 2, pp. 143-
160, 2003.

X. Jiao, M. T. Campbell, and M. T. Heath, "Roccom: an object-oriented, data-
centric software integration framework for multiphysics simulations," in
International conference on Supercomputing, 2003, pp. 358 - 368.

P. M. Johnson, "Second international workshop on software engineering for high
performance computing system applications," in Conference on Software
engineering, 2005, p. 683.

[113]

[114]
[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

188

P. Johnson, "Workshop on software engineering for high performance computing
system (HPCS) applications,"” in Conference on Software Engineering, 2004, p.
772.

F. M. Hovenden, S. D. Walker, H. C. Sharp, and M. Woodman, "Building quality
into scientific software," Software Quality Journal, vol. 5, no. 1, pp. 25-32, 1996.
S. Smith and L. Lai, "A New Requirements Template for Scientific Computing,"
in Workshop of Situational Requirements Engineering Processes, 2005.

C. Blilie, "Patterns in Scientific Software: An Introduction," Computing in
Science and Engineering, vol. 4, no. 3, pp. 48-53, 2002.

T. v. d. Wal, Knapen, Svensson, Athanasiadis, and Rizzoli, "Trade-offs in the
design of cross-disciplinary software systems," in International congress on
modeling and simulation; advances and applications for management and
decision making, 2005.

H. Gardner, "Design Patterns in Scientific Software," in Computational Science
and Its Applications, 2004, pp. 776-785.

T. Cickovski, T. Matthey, and J. u. A. Izaguirre, "Design Patterns for Generic
Object-Oriented Scientific Software," in International Conference on Software
Engineering, 2005.

C. Letondal and U. Zdun, "Anticipating Scientific Software Evolution as a
Combined Technological and Design Approach," in International Workshop on
Unanticipated Software Evolution, 2003

A. Gupta, N. Dubey, D. Naidu, P. Neethinathan, T. P. Srinivasan, B. G. Krishna,
R. Nandakumar, and P. K. Srivastava, "Designing Satellite Data Processing
Software Systems Using Object Oriented Technology," in Indian Cartographer,
2002, pp. 49-54.

S. Z. Guyer and C. Lin, "Broadway: A Software Architecture for Scientific
Computing," in The Architecture of Scientific Software, 2000, pp. 175-192.

D. C. Amold and J. J. Dongarra, "Developing an Architecture to Support the
Implementation and Development of Scientific Computing Applications,” in
working conference on the architecture of scientific software, 2000, pp. 39-55.
R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mclnnes, S. Parker,
and B. Smolinski, "Toward a Common Component Architecture for High-
Performance Scientific Computing," in JEEE International Symposium on High
Performance Distributed Computing, 1999, pp. 13-24.

D. E. Bernholdt, W. R. Elwasif, and J. A. Kohl, "Communication Infrastructure in
High-Performance Component-Based Scientific Computing,” in European
PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 2002, pp. 260 - 270.

T. Epperly, S. R. Kohn, and G. Kumfert, "Component technology for high-
performance sceintific simulation software," in Working Conference on the
Architecture of Scientific Software, 2000, pp. 69 - 86.

D. E. Bernholdt, R. C. Armstrong, and B. A. Allan, "Managing complexity in
modern high end scientific computing through component-based software
engineering," in Workshop on Productivity and Performance in High-End
Computing, 2004.

189

[128] L. Hatton, "The T-Experiments: Errors in scientific software,” IEEE
Computational Science & Engineering, vol. 4, no. 2, pp. 27-38, 1997.

[129] D.E. Post and R. P. Kendall, "Software Project Management and Quality
Engineering Practices for Complex, Coupled Multiphysics, Massively Parallel
Computational Simulations: Lessons Learned From ASCL" International Journal
of High Performance Computing Applications, vol. 18, no. 4, pp. 399 - 416, 2004.

[130] D. M. Beazley, "Automated scientific software scripting with SWIG," Future
Generation Computer Systems, vol. 19, no. 5, pp. 599-609, 2003.

[131] D. M. Beazley and P. S. Lomdahl, "Feeding a Large-scale Physics Application to
Python," in International Python Conference, 1997 pp. 21-28.

[132] "Software Engineering of Energy-related Systems," in
htip:/fwww.ucalgary.ca/~vgarousi/project-sw-energy. html, Last accessed: July
2010.

[133] D. Stutz, T. Neward, and G. Shilling, Shared Source CLI Essentials: O’Reilly,
2003.

[134] E. Abbasi and V. Garousti, "An MILP-based Formulation for Minimizing
Pumping Energy Costs of Oil Pipelines: Beneficial to both the Environment and
Pipeline Companies," in press, Springer Journal on Energy Systems, 2010.

[135] L. systems, "LINGO 12.0 " in Manual for Optimization Modeling Software for
Linear, Nonlinear, and Integer Programming, 2009.

[136] D.E. Perry, "Lecture 11: Validity," in
http://users.ece.utexas.edu/~perry/education/382c/handouts/L 1 I.pdf, Last
accessed: April 2011.

[137] "Pembina Pipeline Corporation," in htip.//www.pembina.com, Last accessed:
April 2011.

[138] P. Runeson and M. Host, "Guidelines for conducting and reporting case study
research in software engineering," Empirical Software Engineering, vol. 14, no. 2,
pp. 131-164, 2009.

[139] E. Abbasi, "Development and industrial application of an MILP-based
optimisation algorithm fr minimizing pumping cost and carbon footprint of oil
pipelines," University of Calgary, Master's thesis, 2010.

[140] C. B. Seaman, "Qualitative methods in empirical studies of software engineering,"
vol. 25, no. 4, pp. 557 - 572, 1999.

{141] "Alaska pipeline," in Attp://www.solarstorms.org/Spipeline. html, Last accessed:
April 2011.

{142] "Enbridge Pipeline System," in
http:/fen. wikipedia.org/wiki/Enbridge Pipeline System, Last accessed: April
2011.

[143] "Pump curve," in htip:/;www.unicade.com/cmax/BuyPump.htm, Last accessed:
April 2011.

[144] "Pump station,” in http.//static. guim.co.uk/sys-
images/Guardian/Pix/pictures/2007/04/12/Gazprom372.jpg, Last accessed: April
2011.

http://www
http://users.ece.utexas.edu/~perrv/education/382c/handouts/LI
http://www.pembina.com
http://www.solarstorms.ors/Spipeline.html
http://en
http://www.unicade.com/cmax/BuvPump.htm

[145]

[146]

[147]

[148]
[149]
[150]
[151]

[152]

[153]

[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]

[166]

190

"Qil pipeline control valves " in htip.//my.qoop.com/store/Photogenic-Asia---
Rovalty-Free-Images-3201258271360100/0il-Pipeline-Control-Valves-by-Shi-

Yali-gpps_559727812410191/, Last accessed: april 2011.

L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization:
Wiley-Interscience, 1999.

"LINDO Systems - Optimization Software: Integer Programming, Linear
Programming, Nonlinear Programming, Stochastic Programming, Global
Optimization," in http://www.lindo.com/, Last accessed: April 2011.

"KML," in htp:/fen.wikipedia.org/wiki/Keyhole Markup Language, Last
accessed: April 2011.

"COM," in http://www.microsoft.com/com/default. mspx, Last accessed: April
2011.

"MVC vs. MVP," in http.//dotnetslackers.com/articles/designpatterns/Evergreen-
but-still-topical-MVC-vs- MVP.aspx, Last accessed:April 2011.

"Class diagrams,” in Atip://en. wikipedia.org/wiki/Class_diagram, Last accessed:
April 2011.

"Iterative and incremental development,” in
htip:/fen.wikipedia.org/wiki/lterative_and_incremental_development, Last
accessed: April 2011

"Dependency analysis," in

htip://publib. boulder. ibm.com/infocenter/sr/v6ri/index.jsp ?topic=/com.ibm.sr.doc
/twsr_mansrvce_governanceuserguide(S.html, Last accessed:April 2011.
"NDepend," in http.//www.ndepend.com/, Last accessed: April 2011.
"Understanding and Using Assemblies and Namespaces in .NET," in
http:/imsdn. microsoft.com/en-us/library/ms 97323 1. aspx, Last accessed: April
2011.

T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, 1976.

"System Namespaces (.Net framework)," in http.//msdn.microsoft.com/en-
us/library, Last accessed: April 2011.

"Building Testable ASP.NET MVC Applications," in Attp://msdn.microsoft.com,
Last accessed: April 2011.

"Microsoft Office XP primary interop assemblies (PIAs)," in
http:/fsupport.microsoft.com/kb/328912, Last accessed: April 2011

"mscorelib,” in Attp://dll. paretologic.com/detail php/mscorlib, Last accessed:
Aprill 2011.

M. Aditya, Foundations of Software Testing: Dorling Kindersley (India) Pvt. Ltd,
2008.

S. Sanderson, ASP.NET MVC framework preview: Apress, 2010.

P. Hamill, Unit test frameworks: O'Reilly Media Inc., 2005.

"NUnit framework," in Attp.//www.nunit.org/, Last accessed: April 2011.
"Testing Google Earth " in http./fearth.google.com/getest. html, Last
accessed:April 2011

"NCover," in htip.//www.ncover.com/, Last accessed: April 2011.

http://www
http://en.wikipedia.ors/wiki/Kevhole
http://www
http://dotnetslackers.com/articles/desisnpatterns/Eversreen-
http://en
http://en.wikivedia.ors/wiki/Iterative
http://www
http://rn.sdn
http://support.microsoft.com/kh/328912
http://dll.paretolosic.com/detail.php/mscorlib
http://www.nunit.ors/

[167]

[168]

[169]
[170]
[171]
[172]
[173]
[174]
[175]
[176]

[177]

[178]

[179]

191

"Test Impact Analysis," in http://msdn.microsofi.com/en-
us/library/dd286598.aspx, Last accessed: April 2011.

N. Koochakzadeh and V. Garousi, "TeCReVis: A Tool for Test Coverage and
Test Redundancy Visualization," in International Conference on Testing:
Academic and Industrial Conference - Practice and Research Techniques, 2010.
A. M. Memon, "A Comprehensive Framework for Testing Graphical User
Interfaces,” PhD thesis, University of Pittsburgh, 2001.

A. M. Memon, "GUI Testing: Pitfalls and Process," Computer, vol. 35, no. §, pp.
87-88, 2002.

A. M. Memon, "Advances in GUI Testing," Advances in Computers, vol. 58, no.
1, pp. 149-201, 2003.

"Rational Functional Tester," in Attp:/www-
01.ibm.com/software/awdtools/tester/functional/#, Last accessed: April 2011.
"Testing the User Interface with Automated UI Tests," in
http.//msdn.microsoft.com/en-us/library/dd286726.aspx, Last accessed: April
2011.

"NUnitForms," in Atp://nunitforms.sourceforge.net/, Last Accessed: April 2011.
"GUITAR--a GUI Testing frAmewoRKk," in htip.//guitar.sourceforge.net/, Last
accessed: April 2011.

"Ranorex Studio," in Attp. //www.ranorex.com/products/ranorex-studio-test-
automation-environment. html, Last accessed: April 2011.

"GUI testing," in
http./fen.wikipedia.org/wiki/Graphical_user_interface_testing#cite_note-eight-8,
Last accessed: April 2011.

A. M. Memon, M. L. Soffa, and M. E. Pollack, "Coverage Criteria for GUI
Testing," in Software Engineering conference held jointly with ACM SIGSOFT
symposium on Foundations of software engineering, 2001, pp. 256-267.
"Behaviour-Driven Development,” in Attp.//behaviour-driven.org, Last accessed:
April 2011.

http://msdn
http://nunitforms.sourceforge.net/
http://guitar.sourceforge.net/
http://www.ranorex.com/products/ranorex-studio-test-
http://en.wikipedia.org/wiki/Graphical
http://behaviour-driven.org

192

Appendix A: Primary Studies and Their Type of Evidence

The table below shows the summary of the primary studies focus and the type of

evidences they presented.

Type of evidence | Ref Context/domain Paper’s main focus
Expert view [3] General Identification of the gap between software
without empirical engineers and scientists
backup [5] General Identification of problematic issues in scientific
computing
[33] General Improving SS development
[105] | Automotive Developing software for automotive industry
[74] General Practices for computational scientists
[109] | General Problem solving environments
[101] | high performance Identifying different risks
computing
[100] | high performance SE for high performance computing
computing
[113] high
[112] | high performance
computing
[103] | Biology Suggesting best practices for SS development
(7] Physical system Issues of developing SS
modeling and
simulation
Case study [88] general | Practices to improve CSE software
Field study [8] Collaboration Differences between scientists and software
among software engineers
engineers and
financial
mathematicians,
earth and
planetary scientists,
space scientists and
molecular biologist
[80] software engineers Challenges of software engineers

developing software
for space
scientists and

biologists

[81]

Biology

Culture and cooperation problems in SS

193

development
[20] Collaboration Issues faced by SS developers
among software
engineers and
financial
mathematicians,
earth and
planetary scientists,
space scientists and
molecular biologist
Case study [23] high performance Identification of the steps and tools in
computing developing high-performance software
[68] Mathematics Proposing a methodology based on software
requirement specification
[89] Imaging software Usability and user-centered design
development
[24] large-scale parallel | Developing large scale parallel software
code development
running on high end
computing systems
[102] | Requirement Investigating the fact that the reliability of
specification for engineering computation can be significantly
beam analysis improved by adopting software engineering
software methodologies for requirements analysis and
development specification
[66] Scientific imaging Investigating the complexity of design
software
[79] Space scientific Investigating the case where software engineers
software developing software for research scientists,
development using a traditional, staged, document-led
methodology
[97] Multiphysics Modeling the input space for testing
simulation
(29] Developing weather | Investigate the code development challenges
forcasting code and the tools used
Experience report | [94] Parallel computation | Proposing and characterizing workflow systems
over data sets '
[131] | Large-scale physics | Using python in SS development
application
[95] developing control | SS development experiences and practices
and data acquisition
software for the
SRS’s (Synchrotron
Radiation Source)
experimental
stations -
[96] Developing Automating scientific workflow

scientific workflow

194

management
software system for
collecting,
analyzing,

and managing data
produced by sensors
and other

instruments and for
creating subsequent
\ reports
[104] | Biomedical software | Investigating adopting agile method
development
{107] | Bioinformatics Introduction and adoption_of agile method
[87] General Proposing different integration strategies for
computational science and engineering software
[129] | Large scale multi- Lessons learned from developing large scale
physics multi-physics computational simulations
computational
simulations .
[108] | evaluating Adopting XP practices
the performance of a
numerical scheme to
solve a model
advection-diffusion
problem
[31] Computational Details of developing software for
biology and computational biology and bioinformatics
bioinformatics
Case study and [34] High-Performance- | Characterizing high-performance computing
survey Computing community
Survey [26] General Developing scientific and computing software
[77] A mixture of Identifying different types of risks in testing SS
engineering and development
scientific disciplines
[36] Computational Surveying on how and where to integrate SE
chemistry with computational science
[86] General Characterization of SS
[78] A mixture of Dealing with risk
engineering and
scientific disciplines
[50] General Surveying how scientists develop and use SS
Exploratory [35] Bioinformatics Investigating the differences of software
study, interviews development by biologists and computer
scientists
Illustration of [83] General Automated software testing for Matlab
ideas
Experiment [128] | seismic data Investigating errors in SS

processing

195

Systematic [49] Embedded Software | Software engineering for embedded systems
mapping and Mobile Robot
Software
Development
Experiences and | [117] | Developing a Investigation of the risks in a modeling
interviews framework which framework and how to address them
can be used for
assessment of how
future alternative
agricultural and
environmental
polices affect
sustainable
development in
Europe
Comparison [72] General Comparing C++ and Fortran
[71] General Comparing C++ and Fortran features
Interview and [70] Different scientific | Investigating quality assessment practices
experience disciplines
Concept [93] Image retrieval- Generative programming for SS developments
implementation poison solver
and case study
Review [51] General CSE best practices
Concept [63] Flight software Presenting new techniques for making
implementation development requirements specifications precise, concise,
unambiguous, and easy to check for
completeness and consistency
[98] Quantom chemistry | Component-based architecture in quantum
application chemistry SC
development
[111] | Multi-physics Proposing a framework for multi-physics
simulation simulations
[116] | Dynamic-systems Introduction on using patterns for SS
simulation
[119] | Computational life | Presenting design patterns for SS and explaining
sciences their benefits
[125] | High-performance Investigating the incorporation of message
scientific computing | passing systems into component-based systems
[25] General Presenting a methodology for development of
the requirements for general purpose scientific
computing software
[91] General Proposing a framework to involve the domain
experts in design
[118]] Plasma physics The use of design patterns
[92] Dealing with legacy | Integrating architectural constraints with legacy
scientific code SS
[122] | Scientifc library Proposing the use of a compiler to automatically
implementation optimize software library implementations

196

[123] | General Proposing a new architecture for SC application
development
[124] | High-performance Proposing a standard to support interoperability
scientific computing | among high-performance scientific components
[67] Builidng scientifc Integrating scientific applications
software models
[126] | High-performance Developing SS component technology
scientific simulation
[127] | High end scientific | Presenting the Common Component
computing Architecture for managing the complexity in
high-performance scientific computing
[110] | Generating scietific | Using computer algebra systems to
code automatically generate a computer program
[99] High-performance Introducing a tool to perform rapid component
scientific computing | prototyping while maintaining robust software
engineering practices
[106] { Langauge Proposing an approach to fill the language gap
interoperability in S8
(130] | Large-scale Automatic SS scripting
parallel molecular
dynamics
simulations
[75] General Testing SS
[76] General Proposing mutation sensitivity testing
[84] General Proposing the use of code mutation for testing
SS
[120] | Biology Integrating a technological and design approach
to support SS evolution
[114] | General Managing individualist programmer
[115] | General Proposing a new template for requirement
specification
[121] | Satellite data Using OO technology for the design of satellite
processing software | data processing software
[85] Image segmentation | Automated verification and validation technique
software for image segmentation
[90] Scientific workflow | Proposing a scientific workflow management
management system | system
development

Table 30: Primary studies main focus and their type of evidence

197

1S

Dependency Analysi

Type Metrics: Code Quality

Appendix B

2dedsawey adhj
JoPOUS MOPIS
SBIa00I MOPUMTO
SO0 MIPUNMTO
BROU MOPUIMIO)
PO MOPUAI)
MopIMIO
SIHOHUOT MOPUVID)
JBPOW MOPUMIO
SEY0IOT MOPUMTD)
SISH00T MOPUMIT
MODUAMIO)
SIB0U0T MOPUMID)
MODUMIO

5 adedsawey adiy

By fugy
NP3 sy
§

9

£l

§

§

l

1}

14

03

§

b

24

(14
Buydno) Buydnoy
voleRyy o ueBly

@ M N D D

ey Apagwny
% newsiho)
] 9%
0 £
] g
1] 8
0 i
0 b
0 i
0 1
0 604
0 &
0 o
0 &
abeians)y Kpapdwo)
T % ¢ Rwoi)Y

Mewoik)
9

- e o Wy eN

B v w

i
b
(3

Apcaichuie))
ewophy

abewadnag

74}
]

05
0
Bi8l
05
17X
1991
il

6%
Ba¢El
£98l

$ LBWWo) %

jossun ¥ o saung
§ 8l 14
g L
l oy
} [4]
{ 0
£ o
£ 8 &
! 8
8 58I %
u s £l
§ iz it
44 6941 9
WeuMIO) suogangsw 8pO)
osaunNg ¢ Tk c oSN

by awey adh|

150 sunpadgameses
510 stugag
g0 sendsy
%0 uegeghund
5t dund
510 wesboy
¥ Jogpauoszundo
ut HONGRU
F0 Jaepoe)uew
50 Ppenuodueny
% MOUM)

§o 3o
] "y

quey ,
" awey ath|

Code Quality measures

Figure 54

S§S 24n31y

JIURILIAYU] PUE SIIQUIIA] 3P0

TypeName ¢ #Instance Methods © Nb Static Methods ¢ Nb Properties ¢ #Fields < # Children Classes = Depth Of nheritance Tree v Type Namespace ©

network 4
pump 7
GEWindow 19
pumpStation 8
varaibleSpeedPump 16
imainController 7
mainControier 18
optmizerController 3
GEControfler 5
fChart 18
Program 0
Settings 1
Resources 1

TypeName Nbinstance Methods

0

W NN e O 0 OO0 OO0 OO o

Nb Static Methods

2 2 0
4 4 1
0 y
4 4 0
10 w0
0 0

0 5 0
0 0 0
0 50
0 w0
i 0 0
i 1 0
2 2 0

Nb Properties Nb Fields Nb Children Classes Depth Of Inheritance Tree

1

1
1
1
2

1
1
1
I
1
3
1

GEWindow.model
GEWindow model
GEWindow
GEWindow mode}
GEWindow.mode!
GEWindow controfiers
GEWindow controliers
GEWindow controllers
GEWindow controllers
GEWindow
GEWindow
GEWindow Properties
GEWindow Properties
Type Namespace

QUDNIIYUT PUD SI2QUUIJY PO :SILPPJY SIdAL

861

199

Treemap metric view

Figure 56: Treemap metric view

Dependency Graphs

200

GEController..ctor()

" GEController. .cctor() |

” GEControlier.GEResize |
{(Form,Panel)

{ GEController.LoadGE |
" {String.Form,Panel)

(GEControlier W
. .GEMouseWhes! :
(MouseEventArgs)

/ GEConwatiar ‘}
- .GEPsrenttirender

e ———
£ GECormoter WM_SAZE

 GECortoise GEMHrander

{GECartmier %
T AINND NOTOPMOST

7 GECortolisr HIWND S0TTOM

7 GEConstiier W_QY_PAINT ©

! GECordmine Y
SWP_SHOWWINOOW

T GEComMOIe WM_OWIT -

{ GEContrater Sendrten "}
Srzanne itz

£ GEConuulier Postitansags
[IPI32. W32, Int32, 023 3)

7 GECantotier WH_COMMAND

7 GECorecisr , Wak_PAINT

7 GEContotier HWND TO® ™

{ GEContiotar 5,
L _SWP FRAMECHANGED

{ GECanioier ™

SWP_HIDEWINDOW

I ——

{ GEControter ™

| SetWindowPos{it3a |
SAEPRE IR, 032 H
Ana3D 1na332 W32}

{ GEConborer

malr¥indowPw -

.m:s;

7 GECortmie goagleEarth

(e e

I ChePSr, 33, 1vt33
Int32.5M32 Booienn)

{ GECorroiee GetParemt
(lenPur)

{ GECommisw an-l-\!
{lnPer jorPer)

f GECortaier SetParent
{32, et 33y

r GEController.CloseGE()

-\
|

H

Figure 57: Dependency graph, within GEController

(optimizerControlIer |
.RunOptimisation(String)

ﬁ)timizerController \
- EditParam(String)

{ optimizerController, *’
.ctor() '

Figure 58: Dependency graph, within optimizerController

: ./’Systom.wmdmfom\s\?

TN ,
” NUnitForms ° ' —
‘ 7 mscorlib

" TestProject! '

System.Drawing *

GEWindow

T
/ Interop EARTHLIb

¢ System.Xmi *

" System °

Figure 59: Dependency graph among the application’s assemblies and the test

assembly

201

Dependency Matrix

202

&

-3 GEWindow

3+ Interop EARTHLD

-~ _Applcation
3} g0 _Chan

-~ _Workbook

#-=0 Wotkshee!

-~ Applcation

4% ApplcalionClass
iz Aoy

- AsisTille

7 Chast

3~ ChatObeect

= ChartDbiects

s ChartTile

4-~s Range

$-=s Sheels

e Workbook

-2 ‘workbooks

-~ Wotksheet

$-2 MhmsGirowp

P XhatType

d- 2P XBaveAshccessMode

v
4

[93% 3 dOIBIU| SO0 YISO

132% 3 OB B0 Y)

o) mcodb

+ O System

#2 System. Drawing

-2 System Windows. Forms
#3 SystemXml

-
pnll B

Figure 60: Dependency matrix

!

T

Ty e Ty

. ll

S
e

w =

[P)

203

Code Visualisation

Figure 61: Code city “Top-down” perspective, top left: Controllers, top right:

Models, bottom left: Views, bottom right: properties

Figure 62: Code city “Isometric” perspective

204
Appendix C: Test Cases

createOptChart method test cases

using GEWindow.controllers;

using Microsoft.VisualStudio.TestTools.UnitTesting;
using System;

using GEWindow.model;

using Excel = Microsoft.Office.Interop.Excel;

namespace TestProjectl
{
/// <summary>
///This is a test class for mainControllerTest and is intended
///to contain all mainControllerTest Unit Tests
//7</summary >
[TestClass()]
public class createOptChartTest
{

private TestContext testContextInstance;

/// <summary>
///Gets or sets the test context which provides
///information about and functionality for the current test run.

///</summary>
public TestContext TestContext
{
get
{
return testContextInstance;
}
set
testContextInstance = value;
}

}

/// <summary>
///A test Ffor createStChart
///</summary>
[TestMethod()]
public void createOptChartTestImagePath()
{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value
int iCounter = 10; // TODO: Initialize to an appropriate value
network nt = new network(); // TODO: Initialize to an appropriate
value
target.readNetworkData(nt);
string expected = @"h:\Program Files\Microsoft Visual Studio
10.e\Common7\IDE" + "\\imgl@.bmp"; // TODO: Initialize to an appropriate value
string actual;
actual = target.createOptChart(iCounter, nt);
Assert.AreEqual (expected, actual);
//Assert.Inconclusive(“Verify the correctness of this test method.");

205

[TestMethod()]
public void createOptChartTestNominalHeaderi()

{

mainController target = new mainController(); // TODO: Initialize to
an appropriate value

int iCounter = 1; // TODO: Initialize to an appropriate value

network nt = new network(); // TODO: Initialize to an appropriate
value

target.readNetworkData(nt);

target.createOptChart(iCounter,nt);

Excel.Application x1App;
Excel.Workbook xlWorkBook;
Excel.Worksheet x1lWorkSheet;

xlApp = new Excel.ApplicationClass();

x1WorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual
Studio 10.8\Common7\IDE\" + "imageExcel.xls", O, true, S5, ", "", true,
Microsoft.Office.Interop.Excel.X1Platform,.x1Windows, "\t", false, false, @, true,
1, @);

//x1WorkBook = x1App.Workbooks.Open(@"C:\Program Files\TestDriven.NET
3\" + "imageExcel.x1s”", @, true, 5, "", ", true,
Microsoft.Office.Interop.Excel.X1Platform.xlWindows, “\t", false, false, 0, true,
1, 9);

xlWorkSheet = (Excel.worksheet)xlWorkBook.Worksheets.get_Item(1);

string actual = ((Excel.Range)xlWorkSheet.Cells[1,
7]).value2.ToString();
string expected = "Total Cost™;
Assert.AreEqual(expected, actual);
}

[TestMethod ()] :
public void createOptChartTestNominalOpti()
{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value
int iCounter = 1; // TODO: Initialize to an appropriate value
network nt = new network(); // TODO: Initialize to an appropriate
value
target.readNetworkData(nt);
target.createOptChart(iCounter, nt);

Excel.Application x1App;
Excel.wWorkbook xlWorkBook;
Excel.Worksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();

x1lWorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual
Studio 10.0\Common7\IDE\" + “imageExcel.x1ls", @, true, 5, "", "", true,
Microsoft.O0ffice.Interop.Excel.XiPlatform.xlWindows, “\t", false, false, 0, true,
1, 9);

x1WorkSheet = (Excel.wWorksheet)xlWorkBook.Worksheets.get_Item(1);

206

string actual = ((Excel.Range)xlWorkSheet.Cells[2,
4]).Value2.ToString();

string expected = "0";

Assert.AreEqual (expected, actual);

}

[TestMethod()]
public void createOptChartTestNominalScada()

{

mainController target = new mainController(); // TODO: Initialize to
an appropriate value

int iCounter = 1; // TODO: Initialize to an appropriate value

network nt = new network(); // TODO: Initialize to an appropriate
value

target.readNetworkData(nt);

target.createOptChart(iCounter, nt);

Excel.Application x1App;
Excel.workbook xlWorkBook;
Excel.worksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();

x1lWorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual
Studio 16.0\Common7\IDE\" + "imageExcel.xls", @, true, S, "", "", true,
Microsoft.O0ffice.Interop.Excel.XlPlatform.xlWindows, "\t", false, false, @, true,
1, @);

xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(1);

string actual = ((Excel.Range)xlWorkSheet.Cells[3,
3]).value2.ToString();

string expected = "392";

Assert.AreEqual (expected, actual);

}

[TestMethod()]
public void createOptChartTestLowBoundaryOpti()

{

mainController target = new mainController(); // TODO: Initialize to
an appropriate value

int iCounter = 1; // TODO: Initialize to an appropriate value

network nt = new network(); // TODO: Initialize to an appropriate
value ,

target.readNetworkbData(nt);

target.createOptChart(iCounter, nt);

Excel.Application x1lApp;
Excel.Workbook xlWorkBook;
Excel.wWorksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();

x1WorkBook = x1App.Workbooks.Open{@"h:\Program Files\Microsoft Visual
Studio 1@.0\Common7\IDE\" + "imageExcel.x1s", @, true, 5, "", "", true,
Microsoft.Office.Interop.Excel.xlPlatform.x1lWindows, "\t", false, false, @, true,
1, @);

207

xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_ Item(1);

string actual = ((Excel.Range)xlWorkSheet.Cells[2,
2]).value2.ToString();

string expected = "640";

Assert.AreEqual(expected, actual);

}

[TestMethod()]
public void createOptChartTestLowBoundaryScada()
{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value
int iCounter = 1; // TODO: Initialize to an appropriate value
network nt = new network(); // TODO: Initialize to an appropriate
value
target.readNetworkData(nt);
target.createOptChart(iCounter, nt);

Excel.Application x1App;
Excel.wWorkbook xlWorkBook;
Excel.worksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();

x1WorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual
Studio 10.0\Common7\IDE\" + "imageExcel.xls", @, true, 5, "", "", true,
Microsoft.Office.Interop.Excel.X1Platform.x1lWindows, "\t", false, false, 0, true,
1, @);

x1WorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get Item(1);

string actual = ((Excel.Range)xlWorkSheet.Cells[3,
2]1).value2.ToString();

string expected = "415";

Assert.AreEqual(expected, actual);

}

[TestMethod ()]
public void createOptChartTestHighBoundaryOpti()

{

mainController target = new mainController(); // TODO: Initialize to
an appropriate value

int iCounter = 1; // TODO: Initialize to an appropriate value

network nt = new network(); // TODO: Initialize to an appropriate
value

target.readNetworkData(nt);

target.createOptChart(iCounter, nt);

Excel.Application x1App;
Excel.workbook xlWorkBook;
Excel.Worksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();

x1lWorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual
Studio 16.0\Common7\IDE\" + “"imageExcel.xls", @, true, §, "“, "", true,
Microsoft.Office.Interop.Excel.XiPlatform.xlWindows, "\t", false, false, O, true,

208

1, @);
xlWorkSheet = (Excel.wWorksheet)xlWorkBook.Worksheets.get_Item(1);

string actual = ((Excel.Range)xlWorkSheet.Cells[2,
71) .value2.ToString();

string expected = "1364.87293";

Assert.AreEqual (expected, actual);

}

[TestMethod()]
public void createOptChartTestHighBoundaryScada()

{

mainController target = new mainController(); // TODO: Initialize to
an appropriate value

int iCounter = 1; // TODO: Initialize to an appropriate value

network nt = new network(); // TODO: Initialize to an appropriate
value

target.readNetworkData(nt);

target.createOptChart(iCounter, nt);

Excel.Application xlApp;
Excel.Workbook xlWorkBook;
Excel.wWorksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();

x1WorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual
Studio 10.0\Common7\IDE\" + "imageExcel.xls", @, true, 5, "", "", true,
Microsoft.Office.Interop.Excel.X1Platform.xlWindows, "\t", false, false, 9, true,
1, 9);

xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(1);

string actual = ((Excel.Range)xlWorkSheet.Cells[3,
71).value2.ToString();

string expected = "3033";

Assert.AreEqual (expected, actual);

}

[TestMethod()]
public void createOptChartNimnalHeader2()

{

mainController target = new mainContreller(); // TODO: Initialize to
an appropriate value

int iCounter = 1; // TODO: Initialize to an appropriate value

network nt = new network(); // TODO: Initialize to an appropriate
value

target.readNetworkData(nt);

target.createOptChart(iCounter, nt);

Excel.Application x1App;
Excel.Workbook xlWorkBook;
Excel.Worksheet xlWorkSheet;

x1App = new Excel.ApplicationClass();
x1lWorkBook = x1App.Workbooks.Open(@"h:\Program Files\Microsoft Visual

209

Studio 10.0\Common7\IDE\" + "imageExcel.xls", @, true, S, "", ", true,
Microsoft.Office.Interop.Excel.X1Platform.xIWindows, "\t", false, false, O, true,
1, e);

xlWorkSheet = (Excel.wWorksheet)xlWorkBook.Worksheets.get_Item(1l);

string actual = ((Excel.Range)xlWorkSheet.Cells(2,
1]) .value2.ToString();

string expected = "Optimization";

Assert.AreEqual{expected, actual);

speedRoots method test cases

using GEWindow.controllers;

using Microsoft.VisualStudio.TestTools.UnitTesting;
using System;

//using NUnit.Framework;

namespace TestProjectl

{

/// <summary>
///This is a test class for mainControllerTest and is intended
///to contain all mainControllerTest Unit Tests
///</summary>
[TestClass()]
public class speedRootsTest
{
private Test(ontext testContextInstance;
/// <summary>
///Gets or sets the test context which provides
///information about and functionality for the current test run.

///</summary>
public TestContext TestContext
{
get
{
return testContextlInstance;
}
set
{
testContextInstance = value;
}

}

/// <summary>

///A test for speedRoots
///</summary>

[TestMethod()]

public void speedRootsTestPPPPPP()
{

mainController target = new mainController(); // TODO: Initialize to

210

an appropriate value

double a = 45.56; // TODO: Initialize to an appropriate value
double b = 234; // TODO: Initialize to an appropriate value
double ¢ = 1; // TODO: Initialize to an appropriate value

double cons = 23.7; // TODO: Initialize to an appropriate value
double H = 100; // TODO: Initialize to an appropriate value
double Q = 450; // TODO: Initialize to an appropriate value
double expected = @; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual(expected, actual);

}

[TestMethod()]
public void speedRootsTestPPPNPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = 45.6; // TODO: Initialize to an appropriate value
double b = 76.56; // TODO: Initialize to an appropriate value
double ¢ = 5679.9; // TODO: Initialize to an appropriate value

double cons = -19.9; // TODO: Initialize to an appropriate value
double H = 467; // TODO: Initialize to an appropriate value
double Q = 4; // TODO: Initialize to an appropriate value

double expected = @; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual(expected, actual);

}

[TestMethod()]
public void speedRootsTestPPNPPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = 56; // TODO: Initialize to an appropriate value
double b = 6789; // TODO: Initialize to an appropriate value
double ¢ = -78.9; // TODO: Initialize to an appropriate value

double cons = 98; // TODO: Initialize to an appropriate value
double H = 9; // TODO: Initialize to an appropriate value

double Q = 100; // TODO: Initialize to an appropriate value
double expected = 0; // TODO: Initialize to an appropriate value
double actual; '

actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual(expected, actual);

}

/// <summary>
///A test for speedRoots
///</summary>
[TestMethod()]
public void speedRootsTestPPNNPP()
{ .
nainController target = new mainController(); // TODO: Initialize to
an appropriate value
double a = 45; // TODO: Initialize to an appropriate value

211

}

double b = 300000; // TODO: Initialize to an appropriate value
double ¢ = -2; // TODO: Initialize to an appropriate value
double cons = -9.6; // TODO: Initialize to an appropriate value
double H =58; // TODO: Initialize to an appropriate value

double Q = 45.9; // TODO: Initialize to an appropriate value
double expected = @; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual(expected, actual);

/// <summary>

///A test for speedRoots

/1 [</summary>

[TestMethod()]

public void speedRootsTestPNPPPP()

{

mainController target = new mainController(); // TODO: Initialize to

an appropriate value

value

}

double a = 45; // TODO: Initialize to an appropriate value
double b = -89989; // TODO: Initialize to an appropriate value
double ¢ = 8.9; // TODO: Initialize to an appropriate value

double cons = 78; // TODO: Initialize to an appropriate value
double H = 45; // TODO: Initialize to an appropriate value

double Q = 10; // TODO: Initialize to an appropriate value

double expected = 101111.23; // TODO: Initialize to an appropriate

double actual;
actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual (expected, actual);

/7] <summary>

///A test for speedRoots
///</sunmary>

[TestMethod()]

public void speedRootsTestPNPNPP()

{

mainController target = new mainController(); // TODO: Initialize to

an appropriate value

}

double a = ©.9124; // TODO: Initialize to an appropriate value
double b = -0.4903; // TODO: Initialize to an appropriate value
double ¢ = 8@6.5363; // TODO: Initialize to an appropriate value

double cons = -@.8713; // TODO: Initialize to an appropriate value
double H = 78; // TODO: Initialize to an appropriate value

double Q = 8; // TODO: Initialize to an appropriate value

double expected = ©.31; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, c, cons, H, Q);

Assert.AreEqual (expected, actual);

/// <summary>
///A test for speedRoots
//7</summary>
[TestMethod()]

212

public void speedRootsTestPNNPPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = 0.0124; // TODO: Initialize to an appropriate value
double b = -0.4903; // TODO: Initialize to an appropriate value
double ¢ = -806.5363; // TODO: Initialize to an appropriate value

double cons = ©.8713; // TODO: Initialize to an appropriate value
double H = 500; // TODO: Initialize to an appropriate value
double Q = 209; // TODO: Initialize to an appropriate value
double expected = ©; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual(expected, actual);

}

/// <summary>

///A test for speedRoots
///</summary>

[TestMethod()]

public void speedRootsTestPNNNPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = ©.0124; // TODO: Initialize to an appropriate value
double b = -9.4903; // TODO: Initialize to an appropriate value
double ¢ = -806.5363; // TODO: Initialize to an appropriate value

double cons = -0.8713; // TODO: Initialize to an appropriate value
double H = 180; // TODO: Initialize to an appropriate value

double Q = 89; // TODO: Initialize to an appropriate value

double expected = @; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);

Assert.AreEqual (expected, actual);

}

/// <summary>

///A test for speedRoots
///</summary>

[TestMathod()]

public void speedRootsTestNPPPPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -0.0124; // TODO: Initialize to an appropriate value
double b = ©.4903; // TODO: Initialize to an appropriate value
double ¢ = 806.5363; // TODO: Initialize to an appropriate value

double cons = ©.8713; // YODO: Initialize to an appropriate value
double H = @.1; // TODO: Initialize to an appropriate value

double Q = 100; // TODO: Initialize to an appropriate value

double expected = ©.36; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, c, cons, H, Q);

Assert.AreEqual (expected, actual);

213

/// <summary>

///A test for speedRoots
///</summary>

[TestMethod ()]

public void speedRootsTestNPPNPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -0.0022; // TODO: Initialize to an appropriate value
double b = 9.4345; // TODO: Initialize to an appropriate value
double c = 926.9063; // TODO: Initialize to an appropriate value

double cons = -5.1234; // TODO: Initialize to an appropriate value
double H = 1@9; // TODO: Initialize to an appropriate value

double Q = 10; // TODO: Initialize to an appropriate value

double expected = ©.33; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, c, cons, H, Q);
Assert.AreEqual(expected, actual);

}

[TestMethod()]
public void speedRootsTestNPNPPP()

{ .
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -0.0022; // TODO: Initialize to an appropriate value
double b = 11110.4345; // TODO: Initialize to an appropriate value
double ¢ = -926.9063; // TODO: Initialize to an appropriate value

double cons = 5.1234; // TODO: Initialize to an appropriate value
double H = 10@; // TODO: Initialize to an appropriate value
double Q = 10; // TODO: Initialize to an appropriate value

double expected = @; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);

Assert.AreEqual (expected, actual);

}

[TestMethod ()]
public void speedRootsTestNPNNPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -9.9022; // TODO: Initialize to an appropriate value
double b = @.4345; // TODO: Initialize to an appropriate value
double ¢ = -926.9063; // TODO: Initialize to an appropriate value

double cons = -5.1234; // TODO: Initialize to an appropriate value
double H = 1€0; // TODO: Initialize to an appropriate value

double Q = 89; // TODO: Initialize to an appropriate value

double expected = ©@; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);

Assert.AreEqual (expected, actual);

}

[TestMethod()]
public void speedRootsTestNNPPPP()

214

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -0.8022; // TODO: Initialize to an appropriate value
double b = -0.4345; // TODO: Initialize to an appropriate value
double ¢ = 926.9063; // TODO: Initialize to an appropriate value

double cons = 5.1234; // TODO: Initialize to an appropriate value
double H = 189; // TODO: Initialize to an appropriate value

double Q = 1@; // TODO: Initialize to an appropriate value

double expected = ©.32; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, c, cons, H, Q);
Assert.AreEqual(expected, actual);

}

[TestMethod()]
public void speedRootsTestNNPNPP()

{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -0.0022; // TODO: Initialize to an appropriate value
double b = -0.4345; // TODO: Initialize to an appropriate value
double c = 926.9063; // TODO: Initialize to an appropriate value

double cons = -5,1234; // TODO: Initialize to an appropriate value
double H = 100; // TODO: Initialize to an appropriate value
double Q = 89; // TODO: Initialize to an appropriate value
double expected = ©.38; // TODO: Initialize to an appropriate value
double actual;
actual = target.speedRoots(a, b, ¢, cons, H, Q);
Assert.AreEqual (expected, actual);
}

[TestMethod()]
public void speedRootsTestNNNPPP()
{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value

double a = -0.0822; // TODO: Initialize to an appropriate value
double b = -0.4345; // TODO: Initialize to an appropriate value
double ¢ = -926.9063; // TODO: Initialize to an appropriate value

double cons = 5.1234; // TODO: Initialize to an appropriate value
double H = 1@@; // TODO: Initialize to an appropriate value
double Q = 9@; // TODO: Initialize to an appropriate value

double expected =@; // TODO: Initialize to an appropriate value
double actual; ’ '

actual = target.speedRoots(a, b, ¢, cons, H, Q);

Assert.AreEqual (expected, actual);

}

[TestMethod()]
public void speedRootsTestNNNNPP()
{
mainController target = new mainController(); // TODO: Initialize to
an appropriate value
double a = -0.8022; // TODO: Initialize to an appropriate value
double b = -0.4345; // TODO: Initialize to an appropriate value

215

double ¢ = -926.9063; // TODO: Initialize to an appropriate value
double cons = -5.1234; // TODO: Initialize to an appropriate value
double H = 100; // TODO: Initialize to an appropriate value

double Q = 80; // TODO: Initialize to an appropriate value

double expected = ©; // TODO: Initialize to an appropriate value
double actual;

actual = target.speedRoots(a, b, ¢, cons, H, Q);

Assert,AreEqual (expected, actual);

