
www.manaraa.com

UNIVERSITY OF CALGARY

A Systematic Literature Review of Software Engineering for Scientific and Engineering

Software and an Industrial Oil Pipeline Software Case Study

by

Roshanak Farhoodi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

AUGUST, 2011

© Roshanak Farhoodi 2011

www.manaraa.com

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-499-00287-7

Our file Notre reference
ISBN: 978-0-499-00287-7

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

www.manaraa.com

Abstract

Scientific and Engineering Software (SES) is different from commercial software,

it often targets computational analysis of a problem without a prior solution. This work is

aimed at systematically reviewing the literature for extracting particular challenges and

solutions of SES development. We also conducted a case study, by developing decision

support and optimization software for the oil industry to bring our findings of the review

into practice and provide evidence of challenges/solutions of developing SES.

Our development experience confirmed observations of the literature on these

challenges, especially those of requirement elicitation and testing. The requirements in

SES are often unknown upfront, developers are often domain experts and software

validation is complex; for the scientific/engineering core for which no certain test oracle

exists.

Following software engineering practices, such as adopting object-oriented

technology, iterative development approach, MVC architectural pattern, unit and GUI

testing, we could successfully develop and commercialize the optimization software

system.

www.manaraa.com

Acknowledgements

My deepest gratefulness goes to Dr. Vahid Garousi for his intense support,

encouragement and guidance throughout this work. Accomplishing this work would have

been impossible without his supervision and assistance.

I would also like to thank Dr. Michael Smith, Dr. Diwakar Krishnamurthy, and

Dr. Jonathan Paul Sillito, my thesis committee members, for suggesting revisions to this

work and providing useful help and feedbacks.

I would like to express my heartfelt sincere gratitude and appreciation to my

lovely parents Mohammad and Shahla, my wonderful siblings Alireza, Ramin and Rozita

and my dear fiance Masoud for their unstoppable support, love and encouragement.

I would like to thank all my dear friends in Calgary, especially SoftQual research

group members; Shahnewaz, Christian and Ehsan, who closely brought me joy and

support during those tough days.

This work was financially supported through the Alberta Ingenuity New Faculty

Award no. 200600673, which is greatly acknowledged.

www.manaraa.com

To Tranquility and Peace

www.manaraa.com

Table of Contents

Abstract...ii
Acknowledgements...iii
Table of Contents... v
List of Tables... viii
List of Figures.. x
List of Acronyms...xii

CHAPTER ONE: INTRODUCTION..1
1.1 Introduction and Motivation.. 1
1.2 Contributions of the Thesis..5
1.3 Thesis Organization... 7

CHAPTER TWO: BACKGROUND AND RELATED W O RK.................................... 8
2.1 Developing SES... 8
2.2 Systematic Mapping Studies and Systematic Literature Reviews................................ 11
2.3 Related Works...15

2.3.1 SLRs on SES Systems.. 15
2.3.2 Pipeline Operation Software...17

2.4 Chapter Summary.. 18

CHAPTER THREE: SYSTEMATIC MAPPING STUDY AND SLR.........................20
3.1 Research Method... 20
3.2 Goal and Research Questions... 20
3.3 Study Selection Strategy..24

3.3.1 Source Selection and Search Keywords... 25
3.3.2 Study Selection Based on Inclusion and Exclusion Criteria.................................. 26

3.4 Data Extraction.. 28
3.5 Synthesis/Aggregation Method... 30
3.6 Results...30

3.6.1 RQ 1- What are the demographics of studies in SES?.. 31
3.6.2 RQ 2- What are the Main Challenges and Solutions in SES?...............................43
3.6.3 RQ 3- What are the best practices in SES development?...................................... 75

3.7 Discussions on threats to validity of the results... 77
3.8 Chapter Summary.. 78

CHAPTER FOUR: OVERVIEW OF THE OIL PIPELINE OPERATION
OPTIMIZATION SOFTWARE DEVELOPMENT CASE STUDY...........................80
4.1 Project and Team Members...80
4.2 Case Study Research Process...81

4.2.1 Case study design.. 81

v

www.manaraa.com

4.2.2 Collection of the Evidence... 84
4.2.3 Reporting.. 85

4.3 Basic Domain Terminology...85
4.3.1 Pipeline Systems... 85
4.3.2 Pump..86
4.3.3 Pump Station... 88
4.3.4 Control Valves.. 89
4.3.5 Power Contract and Power Rate.. 89

4.4 Overview of the Optimization Module...90
4.5 Pembina Pipeline... 92
4.6 Chapter Summary.. 94

CHAPTER FIVE: REQUIREMENT SPECIFICATION, ANALYSIS AND
DESIGN...96
5.1 System requirements.. 96

5.1.1 Functional Requirements... 96
5.1.2 Non-functional Requirements.. 97

5.2 Object-Oriented Analysis and Design..97
5.3 Actors, External Systems and Storage..98

5.3.1 Operator.. 98
5.3.2 Optimization Engine.. 98
5.3.3 Google Earth... 100
5.3.4 Text files..102
5.3.5 XML File...103
5.3.6 MS Excel..103
5.3.7 Optimization formulation file.. 105

5.4 Use-Case Diagram... 106
5.4.1 Use case Specifications...107

5.5 Activity Diagrams........................ ... 111
5.5.1 Run Optimization.. I l l
5.5.2 View Charts.. 113
5.5.3 Load Pipeline.. 113

5.6 Architecture: MVC.. 114
5.7 Class Diagram... 116
5.8 Discussion...118
5.9 Chapter Summary...120

CHAPTER SIX: DEVELOPMENT.. 121
6.1 Development Process: Iterative Approach..121
6.2 Dependency Analysis... 123

6.2.1 Applications Metrics... 124
6.2.2 Dependency Graphs.. 127

6.3 Discussion...133
6.4 Chapter Summary...134

vi

www.manaraa.com

CHAPTER SEVEN: TESTING..135
7.1 Unit Testing and NUnit Framework... 137

7.1.1 Code Coverage.. 142
7.1.2 SUT and Test Suite Dependencies... 143

7.2 GUI Testing..145
7.2.1 Event-Flow Graph... 146
7.2.2 GUI Events and Widgets..146
7.2.3 Event Sequences... 148
7.2.4 GUI Testing Tool.. 148
7.2.5 GUI test Cases (Test Scripts)..149

7.3 Mutation Testing on Optimization Formulation Script...151
7.4 Discussion...154
7.5 Chapter Summary.. 155

CHAPTER EIGHT: OPERATION AND USAGE... 157
8.1 Usage Scenarios..158

8.1.1 Scenario 1: The impact of the delivery volume changes on the total power
cost, using the optimization charts.. 159

8.1.2 Scenario 2: The impact of replacing an existing pump with a new pump on
the total power cost.. 161

8.1.3 Scenario 3: The impact of changes in power rates and thresholds on the total
power cost...164

8.2 Speed Charts...166
8.3 Loading a New Pipeline... 167
8.4 Commercialization of the system.. 169
8.5 Chapter Summary.. 170

CHAPTER NINE: SUMMARY, CONCLUSIONS AND FUTURE WORKS 171
9.1 Summary...171
9.2 Conclusions...174
9.3 Future Works.. 179

APPENDIX A: PRIMARY STUDIES AND THEIR TYPE OF EVIDENCE 192

APPENDIX B: DEPENDENCY ANALYSIS..197

APPENDIX C: TEST CASES...204

www.manaraa.com

List of Tables
Table 1: Comparing the characteristics of conventional software vs. SES........................10

Table 2: Popular oil software solutions.. 18
Table 3: Distribution of papers after applying inclusion and exclusion criteria................ 27

Table 4: Data extracted for each research question... 29
Table 5: Breakdown of primary studies based on the research methods............................29
Table 6: Publications Application Domain...33
Table 7: Application sizes in LQC.. 33
Table 8: Recent research topics in SES development..40
Table 9: Classification of the primary studies based on their main goals......................... 42
Table 10: Summary of the papers discussing requirement issues......................................46

Table 11: Summary of the papers discussing design issues..53
Table 12: Summary of the papers discussing implementation issues..................................60
Table 13: Summary of the papers discussing testing issues..65

Table 14: Summary of the papers discussing maintenance issues.....................................70
Table 15: Summary of the papers discussing cooperation and human-related issues 73

Table 16: Best practices in SES development... 77

Table 17: Team member roles and their expertise... 81

Table 18: Pump stations in Pembina pipeline covered in this project................................94
Table 19: System list of actors and short definitions...98

Table 20: System classes categorization based on MVC architecture............................ 115

Table 21: mainController class methods... 129
Table 22: Description of the external assemblies and namespaces used in our

application.. 132

Table 23: Overview of the system classes and the number of the generated unit test
cases using category partitioning approach... 140

Table 24 : Number of test cases generated for methods of mainController class............. 140

Table 25: System GUI events, their corresponding widget and user actions.................. 147

Table 26: Summary of the events generated by the user interacting with the system.... 148

Table 27: Different paths used to record GUI scripts.. 150

Table 28: Mutation testing summary.. 153

www.manaraa.com

Table 29: Summarizing the solutions adopted for developing the engineering core and
solutions adopted for the software interface.. 178

Table 30: Primary studies main focus and their type of evidence.................................... 196

ix

www.manaraa.com

List of Figures
Figure 1: A general process model for scientific software development (inspired by

ideas from [32]).. 9
Figure 2: Steps of conducting SLR..12
Figure 3: Steps of conducting mapping study...15
Figure 4: Number of the publications between 1980 and 2010.. 32
Figure 5: Programming language distribution... 35
Figure 6: Cumulative number of papers reporting on usage of Fortran, C++ or Java as

their primary choice of programming languages... 36
Figure 7: The most active authors... 37
Figure 8: Active countries in publishing research papers on SES......................................38
Figure 9: Timeline per publication focus area..39

Figure 10: Classification of research group affiliations...41

Figure 11: Cumulative trend of publications in different research sectors........................ 41
Figure 12: Snapshot taken from Alaska pipeline (taken from [140])................................. 86
Figure 13: Sample pump curve, head vs. flow rate and efficiency vs. flow rate (taken

from [142])... 88

Figure 14: A pump station with four pumps (photo by Sergei Grits [143]).......................89
Figure 15: Oil pipeline control valves (adapted from [144])...89

Figure 16: Two sample types of electricity cost rates..90
Figure 17: Geographical spread of Pembina pipeline [136]..93

Figure 18: Schematic view of Pembina pipeline... 93

Figure 19: LINGO environment showing..99
Figure 20: Snapshot of Google Earth application..100

Figure 21: Sample KML file showing header information followed b y101

Figure 22: S3 station internal information..102

Figure 23: Sample XML file used for loading a new pipeline..104

Figure 24: Sample part of the optimization formulation file [138].................................. 105

Figure 25: System use-case diagram... 106
Figure 26: Activity diagram for “Run optimization” use-case..112

Figure 27: Activity diagram for “View chart” use-case.. 113

Figure 28: Activity diagram for “Load pipeline” use-case..114

x

www.manaraa.com

Figure 29: Application class d i a g r a m .. 117
Figure 30: A model of Iterative development approach [151]... 122
Figure 31: Snapshot taken from NDepened analysis report..125
Figure 32: Application classes’ main metrics breakdown...126

Figure 33: Dependency graph, system namespace level... 127
Figure 34: Dependency graph, within mainController.. 130
Figure 35: Dependency graph between .Net assemblies... 131
Figure 36: Test cases generated for getkmlPath method... 139
Figure 37: Snapshot taken in Visual Studio after running test methods of

mainController class..141
Figure 38: Symbol and branch coverage values taken from NCover............................... 143
Figure 39: Snapshot of the covered and uncovered code in NCover for releaseObject

method in the mainController class.. 144
Figure 40: Test Coverage Graph for the test methods of mainController........................145
Figure 41: Interaction overview diagram of the system.. 147

Figure 42: Snapshot of test script taken from Ranorex Studio environment................... 149

Figure 43: Snapshot taken after playing back the test script shown in Figure 4 2 151

Figure 44: Sample part of the optimization formulation file [138].................................. 152
Figure 45: Total cost, default case.. 160

Figure 46: Total cost after decreasing volume..160

Figure 47: Total cost after increasing volume..161
Figure 48: The impact of changing first pump in S4 station on power cost (top)

before, (bottom) after replacing the pump with a pump similar to S2 pump
station..162

Figure 49: The impact of changing first pump in S4 station on other stations power
cost and total power cost (top) before, (bottom) after replacing the pump with a
pump similar to S2 pump station.. 163

Figure 50: SI station power cost (top) with default power rates, (bottom) after
doubling power rates..164

Figure 51: Impact of total power cost (top) before, (bottom) after doubling.................. 165

Figure 52: Sample speed chart...166

Figure 53: Pembina pipeline (top), hypothetical pipeline (bottom).................................. 168

www.manaraa.com

List of Acronyms
CLR Common Language Runtime

EBSE Evidence-Based Software Engineering

GUI Graphical User Interface

IL Intermediate Language

KML Keyhole Markup Language

LOC Lines Of Code

MVC Model-View-Controller

SCADA Supervisory Control And Data Acquisition

SDLC Software Development Life Cycle

SE Software Engineering

SES Scientific and Engineering Software

SLR Systematic Literature Review

SS Scientific Software

SUT System Under Test

www.manaraa.com

1

Chapter One: Introduction

In this chapter, we introduce the problem and the research gaps we intend to

address throughout this thesis. We discuss the motivation and goals, followed by

presenting the contributions of the thesis. The thesis organization is provided at the end

of this chapter.

1.1 Introduction and Motivation

Software systems are one of, if not, the most critical parts of any modem system

(e.g., scientific, engineering, health-care, and military). It is hard to think of large-scale

industrial control and monitoring systems, manufacturing plants, rocket and airplane

navigation systems and many more medical, chemical, electrical and mechanical systems

without a software backbone.

In this thesis we focus on Scientific and Engineering Software (SES) in particular.

We investigate different publications on the methods that the scientists, engineers, or

professional developers use as well as the issues, challenges, experiences and insights

they reported during the life cycle of SES.

SES systems may exhibit quality and functionality shortfalls and failures besides

timescale and effort overruns [1, 2] as they are not usually developed by professional

software engineers [3-5]. Scientist and (non-software) engineers usually face challenges

while interacting with software engineers in building SES systems [6], which results in a

gap between these two communities, the so called “software chasm” by Kelly [3]. Also,

as stated by Cremer et al. [7]: “while advances in hardware for scientific computation

continue to be made, the process o f creating scientific software that takes fu ll advantage

o f the hardware remains a time-consuming, error prone and expensive a r t In this study,

www.manaraa.com

we aim at gathering, reviewing and aggregating practical and theoretical evidence as

presented by different authors to identify the root causes of the current gap and

problematic issues and also to extract how they can be possibly addressed.

A software (a computer program) is considered scientific software if the subject it

addresses is scientific, e.g., mathematical programs such as discrete Fourier

transformation calculator. Similarly, a software or program is considered engineering

software if the subject it addresses is related to engineering, e.g., power plant control

software. Of course, the boundary between these two categories can be often very slim or

inseparable. Segal believes “the major difference between scientific software and other

commercial software lies in the complexity o f the domain” [8].

Scientists and engineers have been developing software for their own specific use

for over six decades now. Starting from early 1950, developers at the US Department of

Defence (DoD) developed scientific software for the analysis of defence systems [9] to

the recent huge software systems built to better study and analyze climate change [10].

Numerous companies focus on this very critical business of developing SES covering all

different engineering disciplines, e.g., Fekete Inc. which develops oil reservoir analysis

software tools [11], Energy Solutions International developing oil and gas software [12],

Engineering Software Center developing various engineering applications [13], and

Intuitive Software developing structural engineering software [14]. In both research and

industrial communities, software engineering methodologies and techniques are being

adapted more and more into the development of major systems in areas such as aero

space, medical and embedded systems [15-17].

www.manaraa.com

Scientific workshops such as the Workshop on Software Research and Climate

Change [18], Software Engineering for Automotive Systems [19], Workshop on Software

Engineering in Health Care [15], Workshop on Aerospace Software Engineering [16],

and Workshop on Software Engineering for Computational Science and Engineering [17]

are being held frequently in this field. The recent findings, techniques and also challenges

in developing SES are being discussed there and also to incorporate the latest finding of

the software engineering community in those application domains.

There are frequent stories about failure of software systems, e.g., Toyota’s break

system failure [2], Mars Climate Orbiter crash in 1999 [1], death resulted from

inadequate testing of the London Ambulance Service software [1] and China Airlines

Airbus Industries A300 crash in 1994 [1]. Increasing challenges of building defect-free

software is one of the main reasons of bringing software engineering best practices into

developing SES [3]. Yet there still exists a gap between how scientists/engineers and

software engineers look at the issues of developing SES [20].

In the first part of the current work, we present the results of a systematic

mapping study followed by a systematic literature review (SLR) [21, 22] conducted in the

area of SES. We have undertaken this systematic literature review to identify the

strengths and weaknesses of the state of the art and practice in developing SES besides

highlighting the challenges of past, current and future trends from the perspective of

developers, researchers and scientists. This is achieved by extracting and aggregating

evidence from key publications in this field and summarizing their insights and findings

towards improving the quality and efficiency of scientific software engineering tasks. We

www.manaraa.com

4

also identified the best practices reported which are applicable to different software

development phases in various problem domains.

By conducting the SLR we were able to characterize SES as a type of software

having four main differences from commercial software. First, in SES development the

requirements cannot be decided in advance, because in most cases the objective of

developing the software is to find the solution to a problem for which no prior solution

exists [23, 24], Second, as the main objective of developing SES is to provide a correct

and reliable code which can be utilized to improve the target science or engineering

discipline, the factor of building a working system in the shortest amount of time often

outweighs adopting rigorous software engineering practices to ensure the quality of end

product [23, 24]. Third, the developers of SES are mostly domain experts (i.e. scientists

and engineers) rather than professional software developers [23, 24]. Finally, testing SES

has two independent stages; testing the scientific/engineering core for which usually no

certain test oracle exists, and testing the software that provides access to that

scientific/engineering core. These four distinctive characteristics introduce unique

challenges to the development of SES, which require particular considerations to be

addressed.

In the second part o f the thesis, we brought the insights taken from systematic

literature review into practice by conducting an industrial case study. This case study was

a part of a bigger project to develop industrial engineering software for the optimization

of oil pipeline operation. In the case study, we planned to practically experience the

challenges of SES development, to utilise the solutions reported, to verify the

applicability of the best practices and to investigate their adaptability, where relevant. As

www.manaraa.com

a result, we presented and discussed the experience of developing the engineering

decision support and optimization software and when relevant, relate and compare our

experience with that of the literature as well as reporting the specific challenges faced. In

this case study, phases of software development are demonstrated and discussed, mainly

with the aim of providing evidence on the challenges of developing engineering software,

verifying the applicability of the best practices found in the literature, investigating their

adaptability and validating the solutions reported.

1.2 Contributions of the Thesis

To the best of our knowledge, there is no other work on the aggregation of the

literature on the state of the art and practice of software engineering for SES. The

importance of systematic mapping studies and systematic literature reviews (will be

discussed in Chapter 2) as well as the importance of software engineering for SES

besides the lack of a comprehensive review in the field inspired us to aggregate well-

known resources into one work. To achieve this goal, which is half of the contributions of

this thesis, we identified a group of important research questions and followed the precise

guideline of performing systematic reviews. We aggregated the challenges, solutions and

observations reported in the literature for the different phases of software development

and extracted the best practices provided for improving SES development. The findings

are provided, along with their particular context and domain, to give the reader a precise

understanding about their applicability and generalizability in various situations. In this

way, these findings can serve as a reference for other researchers and practitioners who

are interested in SES design and development. By reviewing the challenges identified, we

were able to characterize SES as a certain type of software,which deals with the problems

www.manaraa.com

in scientific and engineering context that were frequently mentioned as being in a

complex domain for the typical professional software engineer to learn and master.

Similar to other Enterprise software, it is expected that the designing and implementing

SES can be improved by using standard software engineering practices, such as adopting

OO methodology and design and architectural patterns. However, testing SES is yet an

open issue, mainly as the result of not having easy access to test oracles associated with

validating the scientific core.

For the practical part of the thesis, studying the development of oil pipeline

optimization and decision support software, we adopted the best practices we identified

in the literature whenever applicable to different development phases of our system. We

studied and summarized the real world challenges of developing engineering software.

None of the studies presented in the SLR section of this work were preceded by a

comprehensive literature review, to benefit the experiences and evidence presented by

other researchers in this context.

The software requirements for this system were analysed and designed, the

software features and functionality were implemented and tested in an iterative and

flexible manner to make the practice flexible and maintainable enough with regard to the

characteristics of SES. This case study was also conducted in order to provide evidence

on SES development, in addition to what we found in the literature. We experienced the

complexity of the requirement elicitation and decided to adopt an iterative development

approach to address the emerging requirements received from the domain expert. We had

the opportunity to verify our understanding of the domain and the problem as we moved

toward the completion of the development.

www.manaraa.com

The developed application for oil pipeline operation optimization is being

commercialized currently. The demo of the application has been presented to a group of

potential customers and they have shown initial interest for the customization and

utilization of the system in their company.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. The background information

and related work is provided in Chapter 2. In Chapter 3, the research method used to

perform the review is presented, the research questions that the review tried to answer

detailed and the results extracted from the pool of the primary studies are provided. In

Chapter 4, the overview of the case study for developing pipeline operation optimization

software is presented as the real world practice of developing SES. The details related to

analysis and design, development and testing of the software application are given in

Chapter 5, 6 and 7 respectively. Chapter 8 discusses the operation and usage scenarios of

the system. Finally, Chapter 9 concludes the whole thesis and presents the future work

directions.

www.manaraa.com

8

Chapter Two: Background and Related Work

In this section, we provide brief backgrounds on software engineering for SES

(Section 2.1) and on systematic literature reviews (Section 2.2). We then summarize the

related works in Section 2.3.

2.1 Developing SES

Tang quoted the definition of SES from Smith [25] in her thesis as “the use of

computer tools to analyze or simulate continuous mathematical models of real-world

systems of engineering or scientific importance so that we can better understand and

predict the system’s behaviour” [26]. SES’s have a large variety: They are either

expensive commercial software packages which address a vast diversity of problems and

domains (e.g., Matlab, and Maple) and may have a large dedicated software engineering

team behind them. There are also non-commercial SES tools which are free and/or open-

source such as the R project for statistical computing [27], or Gretl (GNU Regression,

Econometrics and Time-series Library) [28].

More often, scientists attempt to develop scientific software to provide themselves

or their colleagues a tool to better analyze and understand what’s happening in a certain

scientific phenomenon (e.g., [29-32]).

In some cases, the entire purpose of developing the software is to solve a problem

that does not currently have a solution [23]. In such cases, the validation of the end

product is more complex than the case where the goal is to better understand a

phenomenon, because predicting the expected results to use as a test oracle is very hard at

www.manaraa.com

times (if not impossible). The role of the expert’s observations and theoretical basics in

those cases becomes significant.

A general process model of scientific software development is shown in Figure 1.

A vague idea as to the solution to a scientific or engineering problem or the simulation of

a real physical system usually triggers the specification of some primary requirement

which is the starting point of developing the primary version of the software.

Vague
idea

Primary j Primary developed
1 requirements f ' I software

Satisfactory
performance/behaviour

End of j
development i

JlJNa
n

Emerging
requirements Revised/modified software

Figure 1: A general process model for scientific software development (inspired by

ideas from [33])

Once a prototype version of the software is developed and is executed, based on

certain criteria (as defined in the system’s functional and non-functional requirement

specifications), the output(s), performance and behaviour of the software are evaluated. If

it is found unsatisfactory, the software is reworked and modified according to the further

elicitation of requirements which will normally result in a more precise design and

implementation of the software.

This revision cycle will be repeated until a satisfactory and rational behaviour is

obtained which will represent the end of the development process. This resembles the

well-known iterative software development process except that, in the process of

developing SES, most of the time the requirements are emerging as the system is being

www.manaraa.com

10

developed with the developer may not have a sound understanding about them at the

beginning.

Typically scientists who develop software do not have much knowledge and/or

interest in the software engineering aspects of their product [34]. Instead, as stateid by

Chilana [35], they are willing to investigate the use of computational tools to help or

improve the understanding of a scientific concept. On the other hand, the result of the

survey by Maxville [36] confirms that researchers and scientists are “open to effective

techniques that can improve communication, transparency and quality”.

Table 1 summarizes some important differences between SES and typical

conventional software. In the next sections, our SLR results provide more details on each

of these characteristics.

Developer
Background

Domain
Dependency

Requirement
Specification

Testing Software
Users

Maintenance

Conventional
Software

Software
engineering

Mostly
Independent

(Usually)
Comprehensively
defined

Systematic (Usually)
Public

Systematic

SES Scientific
and
engineering
disciplines

Very
dependent

Loosely defined Ad hoc Scientists
and
engineers

Ad hoc

Table 1: Comparing the characteristics of conventional software vs. SES

To clarify the usage of the terms “engineer” and “engineering” in the rest of this

thesis, when they are used alone, we denote the conventional engineers (e.g., mechanical,

electrical, chemical, etc.) and the general area of engineering. However, when software

engineer or software engineering is used, the software focus areas are meant.

www.manaraa.com

11

2.2 Systematic Mapping Studies and Systematic Literature Reviews

Reviews of research literature are carried on for a variety of goals. Usually the

reviews are conducted to provide the theoretical background for subsequent research

activities or to learn the breadth and depth of the research in a certain topic or context.

The reviews also aim at answering practical research questions by summarizing and

presenting what existing research has to offer [37]. As a result, we often find the research

reviews in the introduction section of the publications.

However, there exists another type of literature review that is considered an

original and important type of research by itself [38]. Rather than providing a base for the

researcher to be able to conduct further research and investigations, it builds a solid

starting point for other researchers and practitioners interested in a particular subject.

Four fundamental characteristics are identified for defining these types of reviews, which

make them different from other conventional reviews [38]. They are (1) systematic,

which means they have to follow a methodological approach, (2) explicit, which means

the procedure by which the review was conducted should be explained clearly, (3)

comprehensive, which means the review is expected to include all existing relevant

material, and as a result (4) reproducible by others.

The definition of SLR is summarized by Fink in his book [38] as “a systematic,

explicit, comprehensive, and reproducible method for identifying, evaluating, and

synthesizing the existing body of completed and recorded work produced by researchers,

scholars, and practitioners”.

Ki^chenham et al. in [39] have discussed the importance and educational and

scientific values of evidence-based software engineering (EBSE). SLRs in their paper are

www.manaraa.com

12

considered one of the primary tools o f EBSE and systematic mapping is mentioned to be

a certain type of SLR which is used as a good starting point for more detailed studies.

Evidence-based software engineering, primarily inspired from evidence-based clinical

medicine, aims at employing practical evidence as a guide to the adoption of software

development procedures and practices [40].

Protocol
Definition

Searching the
Literature

Data synthesis

Reporting

Data extraction

Defining the
Purpose

Refining based on
Inclusion/Exclusion criteria

Figure 2: Steps of conducting SLR

In order to properly conduct a SLR a set of particular steps needs to be taken.

These steps are demonstrated in Figure 2. The first step is to clearly define the purpose

and motivation of conducting the review. As mentioned earlier, a SLR is a method for

investigating existing publications based on a defined protocol unlike surveys or other

conventional literature reviews that aim at briefly presenting the current advances and

www.manaraa.com

13

research results,. Hence, the methodical approach for conducting the SLR is characterized

by that protocol, and should be defined in the beginning of the review, to state why and

how the review is conducted [21].

The protocol is defined by asking a number of overarching research questions and

the rest of the review focuses on investigating how well or to what extent each of the

selected publications answers the questions of interest. Meaningful criteria for including

as many relevant publications as possible should be defined, to make the review

comprehensive and complete.
t

The next step is searching the literature to find all potential publications from

well-known publishers. In this step, a group of search keywords need to be defined, by

which the relevant publications for the review can be found. After finding all the

publications according to the search keywords, based on a defined inclusion/exclusion

criterium, the decision of keeping or removing each of the papers from the pool of

publications has to be made. Selected papers should then be read and investigated and

their presented evidence related to each research question of the review should be

extracted and summarized. In order to increase the reliability of the information extracted

in this step and to avoid biased judgements and understandings, the work is required to be

peer-reviewed and the personal uncertainties about the inclusion or relevance of each

papers need to be discussed among the authors. The data is then aggregated using an

appropriate method, such as narrative, meta-ethnography and thematic [41]. The

aggregation result is then presented in different forms such as comparative charts, tables,

figures along with related discussions. Finally the review will be concluded by stating the

major findings and suggesting the possibility of further investigation and research.

www.manaraa.com

14

SLRs are popular and appear in different areas of science and engineering, e.g.,

medical sciences (e.g., [42]), social sciences (e.g., [43]), mechanical engineering (e.g.,

[44]), and software engineering (see the survey in [22]). In designing and executing our

systematic review, we have benefited from previous systematic reviews, especially the

three recent ones published by Ali et al. [45], Harman et al. [46] and Engstrom et al. [47].

A software engineering mapping study (or systematic map) is a method to build a

classification scheme for the software engineering field of interest [48]. It provides a

structure of the type of research reports and results by categorizing and classifying them.

A visual summary of the results will be generated at the end. The analysis of results

focuses on frequencies o f publications for categories within the scheme. Therefore, the

coverage of the research field by existing literature can be determined. The main goal of

the systematic mapping as stated by Peterson et al. [48] is to generate an overview of a

certain research area and to identify the quantity and type of the available research and

results. The study starts with defining research questions of interest, followed by

gathering the relevant publications. The required data are then extracted and the results

are presented as the outcome of the systematic map. The procedure for conducting a

systematic map is demonstrated in Figure 3. As shown in the figure, first the research

questions of interest are defined and then similar to conducting SLRs, the literature is

searched for finding the relevant publications, using defined search keywords. The

resulting pool of publications is then refined using the inclusion and exclusion criteria.

The required data is extracted, classified and reported at the end.

www.manaraa.com

15

Searching the
Literature

Classification and
Reporting

Defining the
Research Questions

Data extraction

Refining based on
Inclusion/Exclusion criteria

Figure 3: Steps of conducting mapping study

The detailed steps of applying mentioned procedures for conducting SLR and

mapping study is presented in Chapter 3.

2.3 Related Works

In this section, first we briefly present the available literature which either study

or review SES development and then in the second part, we present several known

commercial oil pipeline operation software applications.

2.3.1 SLRs on SES Systems

To the best of our knowledge, there is no systematic literature review on the

software engineering for SES development. As a related work, we were only able to find

a systematic mapping study by Feitosa et al. [49] on software engineering for embedded

systems and mobile robot software development. They found out that the application of

software engineering in this field is increasing over the years, though some areas such as

software testing, reference architectures and aspect-oriented development still need more

attention.

www.manaraa.com

16

Among the papers, we found two other publications ([26, 50]) with the aim of

extracting the state of the art in the field of SES. We considered them as “related work”

in this section, as we aimed to separate the publications which comprehensively

conducted research on SES development from the papers which investigated just a certain

stage in SDLC or focused on one issue in the development process.

The first one was a thesis by Jin Tang [26] from McMaster University (Canada) in

2009, which can be considered as a comprehensive survey conducted in order to find out

what SE methodologies and technologies are currently being used in SES. The author

also aimed to identify the areas of improvement in the field and investigate whether the

SES community is interested in adopting new “software engineering” ideas. Other

information such as educational background, working experience, group size, software

size, development practices and software quality were also gathered and reported in this

work. 47% of the respondents to this survey were academic developers and 45% were

developers from industry.

The second was also an online survey conducted by Hanney et al. [50] in 2008

which had around 2,000 respondents. The aim of their survey was to investigate how

scientific software is being developed and used by the majority of the scientists. They

also gathered the information on how scientists gain their software development

knowledge and skills, the impact of team size on their development activities, the

importance of testing and use of super-computers versus desktops and intermediate

computers for using and developing their software. 50% of the respondents to this survey

were academic developers and the rest have different occupations such as managers,

www.manaraa.com

17

supervisors, industrial research scientists, system administrators, laboratory technicians

and clinicians.

Another related work is a technical report by Greenough et al. [51] which

reviewed the practices in computational science and engineering department and also

proposed a set of standards and best practices. They identified the elements of software

development process, classified the software projects and introduced tools, techniques,

methods and metrics to assure the quality of the end result.

In the subsequent sections (when relevant), we will provide more information

reported in the related work to give the reader a broader view in the field of SES.

2.3.2 Pipeline Operation Software

In this section we briefly introduce a number of popular software tools, which are

designed for addressing the needs of oil industry and are being widely used to better

manage the pipeline operation by proposing facilities such as scheduling of oil products

and refinery operations, and product distribution planning.

The features and brief description of the functionalities provided by these tools

are summarized in Table 2. Among these tools, as mentioned in the table, EnergyOne is

the most similar tool to our developed application, in the way that it also provides the

users with the energy management solutions. Other tools are often being used for

scheduling and oil plant management activities. All of the tools presented in the table are

commercial large-scale tools.

www.manaraa.com

18

Software name Ref Description

SCHEDULE++

PIPELINE & PORT

[52] Scheduling of crude oil delivery and unloading at a port,
multi-component batch composition and pipeline batch
transportation scheduling for oil refineries that receive their
raw components via shared multi-purpose pipelines from
multiple ports or companies that are operating those pipelines

SEMTO Scheduling [53] Scheduling feedstock upload, storage and tank transfer and
scheduling the feeds to process units, scheduling process
units including production quality and reaction processes,
scheduling blending and shipments of final products

EnergyOne [54] Customizable pipeline energy management system with
integrated pipeline scheduling, can be customized to run
independently or to work with other internally developed or
commercial software pipeline management package

H/SCHED [55] Scheduling crude supply, refinery operations, product
blending, and refinery product distribution. Any one or any
combination of these features can be provided

Pipeline transporter [56] Used in integration with Primavera project management
application and provide business process solutions that
synchronizes project system, plant maintenance and
production planning modules

Table 2: Popular oil software solutions

2.4 Chapter Summary

In this chapter, the general knowledge about SES development was offered. The

systematic mapping studies and systematic literature reviews were introduced and their

educational and scientific values were mentioned. SLR is mentioned to be one of the very

common forms of EBSE, providing valuable information for scientists and practitioners,

which is a methodical, comprehensive and organized review about the state of the art in a

particular domain and about a certain subject. Systematic mappings are also a good

starting point for more detailed studies as they categorize different types of primary

studies and give summary of the results.

www.manaraa.com

19

Related works in the field of software engineering for SES were presented in the

second part of this chapter, followed by a brief introduction of the well-known

commercial oil pipeline operation software packages.

In the next chapter we will elaborate the details of conducting systematic mapping

and SLR on the development of SES and presents and discuss the findings and results.

www.manaraa.com

20

Chapter Three: Systematic Mapping Study and SLR

In this chapter, we present the process o f performing systematic mapping and

systematic literature review on software engineering for SES development besides the

results. The goal, research questions and results extracted from the literature in this study

are discussed in Section 3.2. Our selection strategy to choose articles is presented in

Section 3.3. The data extraction approach is presented in Section 3.4. In Section 3.5 we

discuss the choice of our aggregation method and in Section 3.6 we present the results

found. Section 3.7 presents briefly a discussion on the threads to the validity of this

review.

3.1 Research Method

We have performed a systematic mapping study, later extended to a SLR, for

assessing and investigating the state of the art and practice in software engineering for

SES development. This SLR is carried out using methods inspired from the guidelines

provided by Kitchenham and Charters [21] as explained in Chapter 2.

3.2 Goal and Research Questions

The goal of our study is to review the state of the art in SES, identify the

weaknesses and strengths, highlight the challenges and find out the future trends and

directions in this field from the point of view of SES developers, researchers and

scientists.

Based on the above goal, we raised the following research questions. To extract

more detailed information for each of the questions, each question is broken down into

several sub-questions.

www.manaraa.com

21

RQ 1- What are the demographics of studies (research space) in SES?

This RQ aims at gathering demographic information from the papers under study,

in order to provide the reader with various classifications related to authors, goals of the

papers, trends of publications and affiliations of the research groups. Information such as

application domains, size and complexity of the applications and number of the

publications of each author are extracted. This RQ is the systematic mapping component

of the study. Performing these types of demographic analysis has been popular in

empirical software engineering studies and is being frequently conducted by other

researchers [46, 57-59]. The sub-questions are:

RQ 1.1- What is the trend of the publications?

The trend of the publications in the field shows how the research activities within

the area have been changing in a particular period. As a result, the increasing trend can

show this field is gaining more attention in recent years, and the body of knowledge is

growing in this area.

RQ 1.2- What are the application domains? (e.g., command and control, chemical

engineering, mathematics)

SES development is an interdisciplinary research area and by extracting the
✓

disciplines which are frequently demanding the development of software systems, more

rigorous domain-dependent practices and frameworks can be suggested to better fit this

demand.

RQ 1.3- What is the size of software systems under study?

By extracting the size of the software systems in the publications, a general

overview on the scale of SES system in the publications can be achieved. This can

www.manaraa.com

22

motivate the development of specific practices to fit SES development based on the

context they are expected to be used, e.g. large-scale software systems need different

considerations in their development process compared to mid/small-scale systems.

RQ 1.4- Which programming languages are reported in each paper?

Identification of the programming languages which are being used frequently,

besides giving an overview of the popular languages in this field, can define new research

directions to address certain issues of implementation using these languages and deal

with interoperability concerns in this context.

RQ 1.5- Which authors and countries have been more active

The ranking of the scholars based on the number of their publication in the field

of SES development can potentially be used by researchers and grad students [57].

Knowing the name of the active authors who frequently publish in the field, grad students

and researchers can easily find and investigate their publications and establish further

collaboration with the authors. Knowing the active countries can also make the process

of searching for related research institutions easier by narrowing it down to certain

locations.

RQ 1.6- What is the publication trend of SES papers by focus area and what are the most

recent research areas?

Extracting the trends and recent research areas in the field gives the researchers in

the related areas the possibility of directing their future research activities toward

identifying and filling the research gaps and addressing the shortcomings of the field.

RQ 1.7- What are the activity levels o f researchers from government, universities and

private sectors?

www.manaraa.com

23

This question aims at providing a general overview of the research activity

breakdown in the field, based on the research group affiliation. The interested reader can

have a broad view of activity levels originated from different research affiliations.

RQ 1.8- What is the trend of publications in academia, industry and government in SES

research papers?

Similar to RQ 1.6, extracting the trends of the publications can potentially provide

the reader with a general view of where to get affiliated with in order to be more actively

involved in the field and to have a closer access to others working in the same field.

Active research groups and laboratories can be identified more easily, when the interested

researcher or grad student know where they are affiliated with.

RQ 1.9- What are the main goals of the papers?

The classification of the publications based on their goals in the review gives the

readers and practitioners a glimpse of whether the issues of their interest are covered by

the publications in the review or not. Also, together with the publication trends based on

the focus area, the classification of the goals can be used for defining future research

activities, where the related issues in the papers are mentioned unaddressed or need

further investigations.

RQ 2- What are the main challenges in SES?

This question is mainly focused on pinpointing the challenges faced by domain

experts, software engineers, scientists, or developers in developing SES. Looking from a

software engineering mindset, software development has various phases often

summarized as requirement elicitation, analysis, design, implementation, testing and

finally maintenance. What makes the identification of the challenges more important in

www.manaraa.com

24

this study is that SES can be characterized by the particular challenges that researchers

and practitioners might face during its development. Also the solutions provided can be

used as a reference in similar context to deal with the complexities of SES development

in real world. The sub-questions we raise are:

RQ 2.1- What are the challenges and solutions in requirements engineering and analysis

of SES?

RQ 2.2- What are the challenges and solutions in the design stage of SES?

RQ 2.3- What are the challenges and solutions in the development (implementation)

stage of SES?

RQ 2.4- What are the challenges and solutions in the testing of SES?

RQ 2.5- What are the challenges and solutions in the maintenance of SES?

RQ 2.6- What are the challenges and solutions in cooperation and human-related factors

of scientific software projects?

RQ 3- What are the best practices in SES development?

This question aims at the identification of context-based best practices in the

literature, that in particular are reported to make SES development a successful practice,

while dealing with the challenges of developing software for scientific and engineering

community.

3.3 Study Selection Strategy

The selection strategy we have used to choose the papers is described in the

following sections.

www.manaraa.com

25

3.3.1 Source Selection and Search Keywords

We searched through available online publications. A preliminary search (using

“scientific and engineering software development” as the keyword) was performed in

IEEE Xplore, ACM Digital Library and Google Scholar to extract all the related

publications as well as to identify related online resources, e.g., well-known journals and

conference proceedings in this area.

Based on the results from the primary search, another thorough search was

performed which narrowed down the results to more specific publications, as explained

below. The end result formed the database of all papers each of which in some way

addressed our questions of interest. In order to ensure the completeness of this systematic

review, we needed to make sure that we are including as many relevant publications as

possible in the final pool of papers. To do so, we identified all potential search keywords

regarding the focus of each of our research questions. We classify these strings mainly

into two sets.

One set includes these major key words: “scientific

software/application/program”, “engineering software/application/program” “computing

software/application/program”, “scientific computing”, “scientific computation”,

“computational science”, and “scientific software development”. The second keyword set

contained more in-depth phrases, in addition to the above ones, e.g., “analysis”,

“maintenance”, “requirement”, “requirement elicitation”, “design”, “documentation”,

“implementation”, “testing”, “verification”, “validation”, “architecture”, “risk”, and

“software engineering”. Then the strings from the first group were combined with the

strings from the second group to form a final set of comprehensive search key strings. By

www.manaraa.com

26

combining, we particularly mean using the AND and OR operator for concatenating our

primary strings chosen from two sets respectively. Using these key strings, we also found

a group of publications which were not relevant to our search questions, e.g. [60, 61].

We also specifically looked into several specific journals and the proceedings of

several specific conferences and workshops in the area of SES, for example: the Elsevier

journal on Advances in Engineering Software, IEEE Journal on Computing in Science &

Engineering, Springer Journal of Scientific Computing, Workshop on Software Research

and Climate Change and International Workshop on Software Engineering for

Computational Science and Engineering.

3.3.2 Study Selection Based on Inclusion and Exclusion Criteria

We primarily chose papers based on their title, abstract and keywords. If not

enough information could be found in the abstract, a careful review of paper contents was

also conducted to ensure that all the papers had a direct relevance to different issues

regarding the SES. We included journal papers, conference proceedings, theses, short

papers and technical reports which addressed one or more of our research questions. To

decrease the risk of missing related publications, we also looked through the references of

the papers we found and included them if relevant. Inclusion process was not limited by

defining any specific measure for quality, quantity or outcome of the research papers,

therefore all the related empirical and theoretical papers were considered for inclusion. If

multiple papers on the same topic and/or by the same author were found, the most recent

one was included. Only papers written in English language and only the ones which were

electronically available were included.

www.manaraa.com

27

The publications which had no relationship to our research questions (the ones

which did not discuss explicitly the development of SES in their research or practice)

were excluded. For example, a large number o f articles in venues such as the Elsevier

Journal on Advances in Engineering Software are just presenting new software systems

or algorithms for engineering purposes (e.g., [62]) and do not discuss issues related to the

software engineering aspects of the software systems built. Such articles were excluded

from this SLR.

Venue
of Included Papers

After Applying
Search Query

of Papers Left
After Applying

Exclusion Criteria
Springer Journals (e.g., Empirical
Software Engineering, Lecture Notes in
Computer Science, Engineering with
Computers, Computer Supported
Cooperative Work)

17 10

ACM Digital Libraiy 51 33
IEEE Computer Society Digital Library
(e.g., IEEE Software, Computing in
Science & Engineering, Agile
Development Conference, International
Parallel and Distributed Processing
Symposium, Symposium on Visual
Languages and Human-Centric
Computing)

39 23

Other venues (e.g., Elsevier Advances in
Engineering Software, Briefings in
Bioinformatics, Concurrency and
Computation: Practice and Experience,
PubMed)

57 17

Total 164 83
Table 3: Distribution of papers after applying inclusion and exclusion criteria

The author of this work together with her supervisor came up with the above

mentioned inclusion/exclusion criteria. Based on these criteria, the author primarily

decided about the inclusion/exclusion of the papers and then discussed with the

www.manaraa.com

28

supervisor to make a decision whenever there was an uncertainty about including or

excluding a paper.

The earliest publication we found was from 1980 [63]. Since this study was

conducted in 2010, articles published up to this year were included. Our pool initially had

164 related publications by applying the above search query. This number was reduced to

83 papers after applying the above mentioned exclusion criteria. Table 3 shows the

details related to the distribution of the publications with respect to their publishers after

the exclusion process.

3.4 Data Extraction

To extract data, the papers in our pool were reviewed by the author of this work

and her supervisor and the information related to the research questions was extracted.

The type of data and evidence collected from the papers related to each research question

are summarized in Table 4.

In order to extract the above evidence from the studies, we needed to categorize

primary studies based on the type of the evidence they presented regarding their research

method. The breakdown of the publications based on their research method (inspired by

[64]) is shown in Table 5.

As shown in Table 5, we grouped the primary studies based on their research

method in several categories. In the empirical categories, we grouped all papers

presenting case studies, field studies, surveys, experiments and reviews. We also grouped

all the articles presenting experts’ point of views and insights which were not explicitly

supported by empirical evidence. We grouped together all the papers that presented

related concepts or proposed a new idea, but the concept or idea was not empirically

www.manaraa.com

29

evaluated. Experience reports were also grouped together. It is worth mentioning that for

all of the papers except the ones categorized under “concept implementation”, the

category \vas explicitly mentioned in the abstract or introduction of the papers. The

interested reader can refer to appendix A, to find out more about the evidence type and

main focus of each of the primary studies.

Research
Questions

Sub-questions Data Collected

RQ 1 RQ 1.1 Articles’ publication year
RQ 1.2 Application domains
RQ 1.3 Software system size
RQ 1.4 Programming languages used
RQ 1.5 List o f authors and the country where the research group is

located
RQ 1.6 The publication trend o f SES papers per research goal and

Recent SES research areas
RQ 1.7 Research group affiliations
RQ 1.8 Publication year and research affiliations
RQ 1.9 Paper’s main goals

RQ2 RQ 2.1 Evidence from the studies which discuss requirements
engineering and analysis

RQ 2.2 Evidence from the studies which discuss software design
RQ 2.3 Evidence from the studies which discuss software

implementation
RQ 2.4 Evidence from the studies which discuss software testing
RQ 2.5 Evidence from the studies which discuss software

maintenance
RQ 2.6 Evidence from the studies which discuss human related

aspects
RQ3 Evidence o f best practices

Table 4: Data extracted for each research question

Evidence Type found in Publications # of papers
Case study and Field study 16
Survey 6
Experiment 1
Review 1
Expert views without empirical backup 12
Concept implementation (proof of concept) 35
Experience report 12
Total 83

Table 5: Breakdown of primary studies based on the research methods

www.manaraa.com

30

3.5 Synthesis/Aggregation Method

In this stage we needed to aggregate and synthesize the data extracted from

primary studies. Synthesis is required to add more meaning and readability to the results.

Since we had to deal with different types of evidence with various strength and

creditability as the result of different research methods found in primary studies (as

mentioned in more details in previous section), we selected narrative synthesis method

[65]. In this method narrative description and explanation of the evidence taken from

primary studies are presented along with commentary and interpretation [41].

There also exist other synthesis methods as mentioned in [41] such as meta­

ethnography, thematic, and cross-case analysis. In meta-ethnography, primary studies are

translated to one another either by approving each other, rejecting each other or building

an argument line. In the thematic method, the recurrent themes in primary studies are

identified and the findings are then summarized and presented under these themes.

Finally in cross-case analysis, evidence is coded based on the identification of broad

thematic headings and then presented by describing differences and commonalities.

We did not perform our synthesis based on the above techniques since the

emphasis of this research was to extract all the related information from available

literature to address our research questions, thus the focus of each research question was

considered as a keyword or theme to search for information through the publications.

3.6 Results

We present in this section the findings of the review based on the questions we

posed in Section 3.1. The results are presented for each of our research (sub-) questions.

www.manaraa.com

31

We have done our mapping study in order to answer the sub-questions of RQ1.

For RQ2, we classified the related papers into six groups (inspired by SDLC) as follows:

papers discussing (1) requirements engineering, (2) design, (3) implementation, (4)

* testing, (5) maintenance, (6) cooperative and human related aspects. Each group

provides data for one of the sub RQs. Since some of the papers discussed more than one

stage in SDLC, these groups are not disjoint groups and there exist overlaps among the

papers that are included in each group.

3.6.1 RQ 1- What are the demographics o f studies in SES?

In this section, we present the findings from our systematic mapping study. We

focused on demographic characteristics which reflect the variety and frequency of the

research on different areas and domains for which SES are developed.

3.6.1.1 RQ 1.1: What is the trend of the publications over years?

We counted the number of publications in each year. Publication’s trend from

1980 to 2009 is shown in Figure 4. The publication year of the earliest paper [63] in our

pool was 1980 which proposed new techniques that can be applied to complex real-time

flight software systems for requirements specification of the software systems built for

the US Navy’s A-7 aircraft.

www.manaraa.com

32

O
««

©
Urn©J3£
S32

1
I

1
I I I

f * ^ t r t ' o r - c © 0 N O * - < e M M ^ , i r t s © t “' * c o o ^
8 D * f l 8 « ® f l 8 ® ^ 0 ' 0 ' 0 ' 0 ‘ 0 ' f f ' 0 ' 0 ' 0 ' _^ ^ ft f t ft f t f t f t f t f t ft f t f t f t f t f t A O

ifi so
o o o - o oN N

is eo 0s © © ©
© o ©M N N

Figure 4: Number of the publications between 1980 and 2010

As we can see in Figure 4, there were very few papers until 1995. The number of

the publications starts to rise sharply in 1997. Our pool does not have any paper

published in 2001. We had most of the paper publications in 2008 (17 papers) and 2009

(23 papers). Also, we notice that the cumulative number of the publications has almost

doubled from 2006 (48 papers) to 2009 (81 papers).

3.6.1.2 RQ 1.2: What are the application domains?

We categorized the publications with respect to their application domains. The

papers distribution is shown in Table 6.

Based on the table, 41% of the papers did not mention any specific domain for

their study. About 15 % of the papers (mostly survey and case study papers) have

conducted research on several disciplines. Among other domains, physics and biology

were the most common domains.

www.manaraa.com

33

Reference Discipline Percentage o f papers
Automotive industry 1.2%
Agriculture 1.2%
Weather forecasting 2.4 %
Mathematics 2.4 %
Chemistry 3.6%
Aerospace engineering 3.6 %
Image processing 6 %
Biology 8.4 %
Physics 14.5 %
Mixed disciplines 15.7%
Not mentioned 41 %

Table 6: Publications Application Domain

3.6.1.3 RQ 1.3: What is the size of software systems under study?

Not all the papers revealed detail information regarding size or complexity of the

software systems under study. However, about a dozen of the papers did mention that

information. The information we found in other papers about the size of their projects is

summarized in Table 7.

Name of the
application

Description Lines of code
(LOC)

Java Imaging Utilities
[66]

API for image manipulation -43,000

Art of Illusion [66] 3D model and image rendering -65,000
UM (Unified Model)
code base [10]

A code suite for numerical weather prediction and climate
models

-830,000

Kahindu Medium [66] Tool for image manipulation using image filters -108,000
Osprey [29] A component o f a large weather forecasting suite -150,000
FALCON [23] Product performance evaluation software -405,000
HAWK [23] Manufacturing process analysis software -134,000
CONDOR [23] Product performance simulator -200,000
EAGLE [23] Signal processing software L ess than

100,000
NENE [23] Molecule modeling software -750,000
MI [67] OO environment for integration o f scientific applications -140,000
CC1, CC2, CC3, CC4,
CCS [36]

Computational Chemistry software 10,000...320,000

PMGT [68] Parallel Mesh Generation Toolbox -3,000
BlobFlow [69] Two dimensional Navier-Stokes equations solver -10,000
'A pproxim ately

Table 7: Application sizes in LOC

www.manaraa.com

34

Hochstein et al. [24] mentioned that they are working with a group of projects for

computational simulation (e.g. on solid mechanics, fluid mechanics, combustion)whose

size is between 100-500 KLOC. Easterbrook et al- [10] presented a graph on the growth

of their project over 15 years where they showed the project size was about 110 KLOC in

1993 and grew to around 830 KLOC in 2009. Kelly et al. [70] conducted a study

assessing the quality of 10 SES whose size varied between 1 to 100 KLOC.

As seen in the above table, PMGT [25], which is a parallel mesh generation

toolbox is the smallest tool in our pool with 3 KLOC. UM (Unified Model) system [10]

which is a software for numerical weather prediction with 830 KLOC is the largest

project among the others.

3.6.1.4 RQ 1.4: Which programming languages are being used?

In our paper pool, we had 72 papers mentioning the programming language used

in their projects. As shown in Figure 5, the majority of the applications were written in

Fortran. The most widely used versions of Fortran, as mentioned explicitly in seven

papers out of a total of 24 papers, were versions 77 and 90. In nine papers, Fortran was

being used together with a second (or more) language, e.g., C++. After Fortran, Java,

C++ and also Python are the most widely used ones. Matlab and Perl come next, while

the use of Ruby and PHP was only reported in one paper.

www.manaraa.com

35

P y th o n , 14%

■ F o r tra n , 31%

Figure 5: Programming language distribution

In a study by Carver et al. [23], the authors reported five case studies of SES

development projects and each project was from a different scientific or engineering

domain. They found out that the primary language of the projects does not changes over

time, meaning that Fortran remained the dominant language in the projects and the use of

high-level and object-oriented languages (such as Java or C++) were relatively low.

In a paper by Cary et al. [71], a comparison between Fortran 90 and C++ was

undertaken when being used for OO scientific programming. C++ is identified to have

full support for inheritance and polymorphism while Fortran 90 does not support

inheritance. It has been shown that Fortran 90 specific features such as mathematical

arrays and specifiable precision of floating-point numbers can be added to C++ by the

implementation of class libraries.

To support portability and reusability, C++ supports templates which are not

supported in Fortran 90. Though primary C++ compilers used to be slower than Fortran

www.manaraa.com

36

[72], optimized C++ compilers can be used now to generate executable programs that can

compete with those generated by Fortran compliers in terms of performance.

As discussed by Veldhuizen et al. [72], there is no more a need for mixed-

language programming where the framework of the programs were written in C++ and

the routines which needed to have high performance were written in Fortran. In another

article by Veldhuizen [73] the performance of C++ in comparison to Fortran is shown to

be practically better (i.e., higher performance) using different known benchmarks

(frameworks to assess the performance) in linear algebra, and array stencilling.

We tracked the trend of Fortran, Java and C++ as the most popular languages over

the publication year. The cumulative numbers of papers reporting on usage of Fortran,

C++ or Java as their choice of programming languages are visualized in Figure 6.

Although it is not easy to draw clear conclusions on the increasing or decreasing

popularity of any of these languages, but we can see than the use of Java as their choice

of programming languages by SES developers is growing faster than that of C++.

yi
C
1 30 ;

— Fortran
 C++
- - - Java

W9 mm3

O <&> &

Figure 6: Cumulative number of papers reporting on usage of Fortran, C++ or Java

as their primary choice of programming languages

www.manaraa.com

37

Also according to the survey by Tang [26] C, Fortran and C++ were the most

popular programming language used in SES development. The use of other languages

such as C# and VB.Net is also indicated to be popular among the respondents of the

survey.

3.6.1.5 RQ 1.5: Which researchers and countries have been more active?

To conduct a bibliometric analysis to rank active researchers and countries, we

counted the number of papers published by each author in our pool of papers. Results for

the researchers who have at least two or more publication in our paper pool are shown in

Figure 7.

Diane Kelly, affiliated with the Royal Military College of Canada [3, 70, 74-78]

and Judith Segal from Open University in the UK [6, 8, 20, 33, 79-81] with seven papers

have the lead among all the authors in our pool. Douglas Post, Richard Kendall and

Jeffrey Carver with five papers stand next.

iiMiiimiimiffl
■o tz k •s e O
S 2 » 3 ■» *= J# c _ IS ®■5? — “ M mm
| 5 « 3 I |
s £ i

Figure 7: The most active authors

www.manaraa.com

38

We also wanted to see which countries are more active in this area. The

distribution of countries based on the author affiliations is shown in Figure 8. If a paper

had several authors from two or more countries, we added a weight to each of those

countries (sum of the weights for each such paper being equal to 1).

As seen in the figure, USA, Canada and the UK are the top 3 contributing

counties to the literature on SES. Only 18 countries have published papers in this field.

Except Australia, Brazil, India and Japan, all of the other 14 countries are from North

America or Europe.

5 0

4 0

3 20

10

Figure 8: Active countries in publishing research papers on SES

3.6.1.6 RQ 1.6: What is the publication trend of SES papers by focus area and what are
the most recent research areas?

To analyze the publication trend of SES papers, we used the same categorization

as in Table 9 and counted the number of the papers published in each year.

www.manaraa.com

39

• Characteristics, tools
and methods

• Human issues

a languages

a Recommendations and
guidelines

• Requirements

• Design and architecture

• Risks

«* Testing

1979 ISM 1319 1994 1993 20M 2009

Figure 9: Timeline per publication focus area

Results are shown in Figure 9 using a bubble chart. The size o f the bubbles in

each category per year is proportional to the number of the publications (as marked in the

figure with numbers 1, 3 and 5 as samples) for that category in that year.

As it is shown in Figure 9, most of the recent publications in our pool were about

testing, design and architecture and human related issues in SES development as well as

the papers on characteristics, methodologies and tools. This shows these areas have

gained more attention in the field but other areas such as requirement elicitation and

maintenance still need further investigations.

The most recent research areas within the last 5 years (2006-2010) were also

extracted and shown in Table 8 to give the reader a detailed view of the recent

publication’s topic in the field.

www.manaraa.com

40

Year Topics References
2010 SE in Embedded and mobile robot software [49]

Code development for computational Chemistry [82]
2009 SE for climate change [10]

Bioinformatics Software development F351
Scalable software development [36]
Developing high quality Parallel Mesh Generation
Toolbox

[68]

Testing SS [75, 76, 83-85]
SES development characteristics, practices and problems [26, 50, 74, 80, 81, 86-

88]
SS design [89-92]
SS development by generative programming [93]

2008 SES development characteristics, practices and problems T4, 6, 8,33,51,94-961
Developing weather forecasting code [291
High-performance computing [34]
SS testing, verification and quality assessment [69, 70, 77, 97]
Large-scale parallel scientific code development [24]
Dealing with risk in SS [78]
Developing quantum chemistry science application [98]
Managing SS complexity [99]

2007 SES development characteristics, practices and problems [3, 20]
Development environments [23]
High-performance computing characteristics and risks [100, 1011
Requirement analysis [1021

2006 SES development characteristics, practices and problems [5, 103]
Design complexity [66]
Development of requirement documentation [25]
Agile methods in biomedical software development [104]
Challenges in automotive software engineering [105]
Language interoperability issues [106]

Table 8: Recent research topics in SES development

3.6.1.7 RQ 1.7: What are the most active sectors for software systems under study? (e.g.,
government, universities, private sectors)

By extracting the research group affiliation information from the papers, we

categorized them into four groups: (1) governmental research groups such as NASA, (2)

the ones affiliated with universities, (3) corporate research groups and laboratories, and

(4) collaborative work (a combination of two or three other sectors). The results related to

www.manaraa.com

41

this classification are shown in Figure 10. Not surprisingly, majority of the works have

been published by university labs and research institutions affiliated with universities.

■ C o lla b o ra t iv e w o rk s
2 5 *C o rp o ra te r e s e a r c h

g r o u p s / l a b s
19% G o v e r n m e n ta l

■ U n iv e rs i t ie s
49%

Figure 10: Classification of research group affiliations

3.6.1.8 RQ 1.8: What is the trend of publications in academia, industry and government
in SES research papers?

We gathered the number of the publications of each research sector over the

publication year in order to study the publication trends for each sector. The results are

depicted in Figure 11.

5 0

4 5

« • • g o v e r n m e n t

u n iv e rs ity

• • • • • c o r p o r a te r e s e a r c h / la b

c o lla b o ra tiv e w o rk

4 0

3 5

3 0e01aIS
a .

‘o 20

10

1 9 8 0 1 9 8 2 1 9 8 4 1 9 8 6 1 9 8 8 1 9 9 0 1 9 9 2 1 9 9 4 1 9 9 6 1 9 9 8 2 0 0 0 2 0 0 2 2 0 0 4 2 0 0 6 2 0 0 8 2 0 1 0

Figure 11: Cumulative trend of publications in different research sectors

www.manaraa.com

42

As shown in the figure, the number of publications in each of the four categories

follows an increasing trend over years. In the academic section, which surpasses other

sectors significantly, the growth is noticeably quicker. Corporate research groups/labs

have started publishing papers in the field way ahead of the other groups. The

publications in intersection collaborations are also increasing rapidly in recent years.

3.6.1.9 RQ 1.9: What are the main goals of the papers?

The publications were categorized based on their main goal, in a way that

categories have the least possible overlap with each other. We came up with seven

different categories as shown in Table 9. The majority of the papers fall under the

category named “characteristics, methodologies, tool and environments”. In this group,

the papers mainly discuss different approaches (e.g., using algebra systems, problem

solving environments,), methodologies (such as Agile) as applied to the development of

SES as well as characteristics of SES (such as high-performance computing systems).

Main topic of the paper Paper references # of papers

Characteristics, development
methodologies, tools and environments

[7, 10, 23,24, 26, 29,31,33, 34,
68, 82, 86, 87, 94-96, 100, 104,
107-1131

25

Issues and challenges related to different
types of developers and their attitudes

[3,8, 20, 35, 50, 79-81,114] 9

Requirements T25, 63, 102,1151 4
Design and architecture [66, 67, 89-93, 98, 99, 105, 116-

1271
22

Testing SES [70, 75-77, 83-85, 971 8
Different types of risks [78, 101, 1281 3
Lessons learned, guidelines and
recommendations for SES development

[5,36,51,74, 88, 103, 129] 7

Languages used in the development [71, 72, 106, 130, 1311 5
Table 9: Classification of the primary studies based on their main goals

www.manaraa.com

43

The second category called “issues and challenges related to different types of

developers and their attitudes” mostly includes the papers which discuss issues originated

from the differences between scientists and software engineers. “Lessons learned,

guidelines and recommendations” group consists of the papers discussing the experiences

of the authors and their proposed best practices. The rest of the groups’ names are self-

explanatory as shown in Table 9.

3.6.2 RQ 2- What are the Main Challenges and Solutions in SES?

We investigate the challenges, solutions and other observations in further detail

next through RQ 2.1-RQ 2.6, which focus on each SDLC phase.

3.6.2.1 RQ 2.1: What are the challenges and solutions in requirements engineering of
scientific software?

In order to provide the reader with the type of evidence we had in each section,

we counted the number of different papers in each category of evidence. We had 16

papers mentioning the issues related to the requirements in SES development. Among

them, there are three case studies, one field study, one experience report, two surveys,

three concept implementation and six expert views. Table 10, provides information on

these papers main focus, evidence type and context besides a brief description of the

challenges, solutions and observation reported in each papers. ‘General’, under the

‘Context/Domain’ column in the table means no particular context was mentioned in the

papers, or the authors explicitly claimed that their findings are applicable to the broad

context of SES development. The “Specific to SES” column shows whether the

challenges presented in the literature are specific to SES development or they are

www.manaraa.com

44

common concerns of any type of software development practice, and whether the

solutions suggested here are also being adopted elsewhere or not.

Ref Paper’s main
focus

Ev
id

en
ce

ty
pe

Challenges Solutions/Observations Specific
to SES

Context/
Domain

[95] SS development
experiences and
practices

Ex
p.

 r
ep

or
t Not being able to fix the

requirements when there
exists no solution for the
scientific/engineering
problem

Solution: starting the
development with
estimation o f basic
requirements

Challen
ge: Yes
Solution
: No

Developing
control and
data
acquisition
software

[79] Investigating
the case where
software
engineers
developing
software for
research
scientists, using
a traditional,
staged,
document-led
methodology

Ca
se

st

ud
y

Yes Space
scientific
software
developme
nt

[100] SE for high
performance
computing

=s

Observation: the
requirements conform to
mathematical models

No High
performanc
e systems

[33] Improving SS
development

>
t:oa,Xw

Solutions: engaging
scientists in software
development

Yes General

-Gaining a correct and
precise understanding o f
the problem domain and
application requirements

Yes

[23] Identification of
the steps and
tools in
developing
high-
performance
software

Ca
se

st

ud
y -Complexity o f

requirement
specification

-Complexity o f
requirement elicitation

Yes High
performanc
e
computing

[25] Presenting a
methodology
for
development o f
the
requirements

C
on

ce
pt

im
pl

em
en

ta
tio

Solutions: writing the
requirements in a
testable way

No General

www.manaraa.com

45

Difficulty in prioritizing
non-functional
requirements

No

[80] Challenges o f
software
engineers

Fie
ld

st
ud

y

Gathering o f the
requirements by
scientists

Yes Software
engineers
developing
software
for space
scientists
and
biologists

[68] Proposing a
methodology
based on
software
requirement
specification

Ca
se

St

ud
y

Observation: use o f the
requirement as a contract
between developers and
testers to promote
verifiability

No Mathemati
cs

[63] Presenting new
techniques for
making
requirements
specifications
precise,
concise,
unambiguous,
and easy to
check

Co
n.

 I
m

pl
em

.

Not having a reliable
resource for further
reference, when facing a
conflict between
software engineers and
domain experts

Solutions: Documenting
the confirmed
requirements between
the developers and
domain experts at each
stage

No Flight
software
developme
nt

[115] Proposing a
new template
for requirement
specification

Difficulty o f validating
the requirements

No General

[113] SE for high
performance
computing

Ex
pe

rt
vi

ew

Observation: the
requirements conform to
mathematical models

No High
performanc
e systems

[112] SE for high
performance
computing

No High
performanc
e systems

[105] Developing
software for
automotive
industry

Dealing with innovative
and modem
requirements

No Automotiv
e software
developme
nt

[101] Identifying
different risks
in high
performance
computing
applications

Dealing with risks in
requirement engineering

No High
performanc
e
computing

www.manaraa.com

46

[50] Surveying how
scientists
develop and use
SS

Observations: enough
attention is paid to
requirement elicitation
when the development
team is large

No General

[26] Developing 5*£ Observation: use o f No General
scientific and 3

C /5
informal specifications is

computing more common­
software correctness and

reliability are found to be
the most important non­
functional requirements

Table 10: Summary of the papers discussing requirement issues

In the following sections more details on the challenges, solution and other

observations concerning the requirement in SES are presented.

Challenges

For a developer who is not an expert in the scientific/engineering field of a to-be-

developed software, gaining a correct and precise understanding about the problem

domain and the application requirements is the very first challenge [33]. As reported by

Segal in [80]: “scientists may not appreciate that the gathering of requirements at both the

high (functional) and low (user) level is often a significant part of software

development”.

Another characteristic that tends to be problematic is that, in most of SES

projects, the requirement cannot be fixed and finalized in the early stages as reported by

Segal in [33], Specially, while developing software to discover a scientific or engineering

problem for which there exists no prior solution, it is very challenging to fix the

requirements upfront [23, 100].

Requirement elicitation, though being very important, is often neglected in

scientific software development according to Smith [25]. This is in particular problematic

www.manaraa.com

47

when in the design or implementation phase, ambiguities begin to emerge and there exists

no criterion on how to resolve them easily and properly. On the other hand, as mentioned

before one specific characteristic of requirements in SES is that usually they cannot get

finalized at the beginning of software development as stated in the experience paper

reported by Segal [79].

In most scientific applications, the requirements specification is very difficult to

validate because the quantities are often continuous in comparison to other typical

commercial software where values are discrete[l 15].

In the domain of automotive systems, a “fitting requirements engineering

method” is stated to be a big problem [105], as most of the requirements are innovative

and modem.

In terms of non-functional requirements, especially performance, usability and

portability, building a system with a realistic and feasible trade-off is another great

challenge. Smith discusses in [25] that it is often not trivial to give a valid priority to one

non-functional requirement factor over another.

Kendall et al. in their study [101] identified the risks of the requirement phase of

high performance computing applications such as unpredictability of the requirements,

failure to address the constant evolution of the requirements and having incomplete,

unclear and inaccurate requirements.

Possible solutions

According to another paper by Segal et al. [33], the nature of requirements in the

case of SES often leads to the above challenges, unless the scientists themselves are

entirely in charge of software development. Otherwise the developers must reach to a

www.manaraa.com

48

good understanding of the domain before starting the development, which is not a trivial

task.

After validating their understanding, the developers should be committed to

document what is already confirmed between them and the domain experts to build a

reliable resource for further references, as suggested by Heninger [63].

Smith [25] suggested that the requirements specification should be written in a

way that it is testable and easy to validate. According to Achroyd et al. [95], one of the

characteristics of a successful scientific software development project is that it will start

with an estimation of the basic requirements and later, as all parties leam how to

cooperate efficiently, detailed requirements would be added to support extra

functionality. The authors highly recommend not putting too much demand on the

domain experts to finalize the requirements upfront.

Other observations

According to a recent survey by Hannay et al. [50], developers of SES working in

large teams are more likely to pay enough attention to requirement elicitation and

analyzing rather than the developers in small teams and the ones who are working on

small projects.

In high performance systems as stated by Carver [100] and Johnson [112, 113],

the requirements often must conform to sophisticated mathematical models and can be an

executable model in a system such as Mathematica.

Smith in [68], discussed about the critical role of requirements to quality of the

software and mentioned that “software requirements serve as a contract between

www.manaraa.com

49

developers and testers; therefore, the SRS (software requirements specification) promotes

verifiability by giving the testers something to verify against.”

According to Tang’s thesis [26], 70 percent of the respondents to his survey were

using informal specifications for their project requirements. Among non-functional

requirements, correctness and reliability are rated higher as the respondents believed that

the quality of the software highly relies on them. On the other hand, security and memory

usage were the least considered non-functional requirements.

To provide empirical evidence on the above issues from our own experience

based on our meeting minutes with our industrial partners, we report next the actual

challenges we have been experiencing in our ongoing major optimization software

development project for oil pipelines’ pump operation [132]. When the project started in

early 2008, the team became involved in requirements engineering and analysis of the

system.

The team was composed of three software engineers (one of whom had good

knowledge of optimization techniques), one civil engineer also with good knowledge of

optimization techniques, and a mechanical engineer (as domain expert) from an industrial

firm in Alberta, Canada. Although the final product of the requirements engineering

phase was of good quality, the team had numerous challenges along the process, e.g.,

finding a consistent vocabulary to understand one another, prioritization of major features

versus minor ones and deciding on the interoperability requirements of the to-be-built

system with existing software systems used by the industrial partner. One of the software

engineers remembers many occasions in which he was struggling to use less-technical

www.manaraa.com

50

software engineering and optimization vocabulary to be able to smoothly communicate

with the domain experts (i.e., the mechanical engineers).

3.6.2.2 RQ 2.2: What are the challenges and solutions in the design phase of scientific
software?

We discovered 21 papers mentioning the issues of design in SES development.

The breakdown of the evidence type of these papers is as follows: two surveys, two case

studies, one experience report, 13 concept implementations, one experience/interview,

one case study/survey and one expert view. Table 11 summarizes these papers main

focus, context/domain and the reported challenges, solutions and observation regarding

the design in SES development.

Ref P aper’s main Challenges Solutions/ Specific Context/
focus

E
vi

de
nt

ty
pe

O bservations to SES Domain

[117] Investigation
o f the risks in
a modeling
framework

-Unrealistic user
expectations
- Premature
obsolescence o f the

No Developing
a
framework
for

and how to design assessment
address them

Ex
pe

rie
nc

es
 a

nd

in
ter

vi
ew o f how

future
alternative
agricultural
and
environme
ntal
polices
affect
sustainable
developme
nt in
Europe

[34] Characterizin >, >, Not having background No High-
g high- -o U

3 £ to apply OO principles Performanc
performance <u 00 e-
computing A "O

(J cs
Computing

community

www.manaraa.com

51

[101] Identifying
different risks

Ex
pe

rt
vi

ew

Having complex
requirements makes the
design complex

No High
performanc
e
computing

[121] Using OO
technology
for the design
o f satellite
data
processing
software

The complexities o f
modeling: physical
(problem at hand),
mathematical
(formulation) and
software (practical
solution) modeling

Yes Satellite
data
processing
software

[125] Investigating
the
incorporation
o f message
passing
systems into
component-
based systems

Incorporating
componentized
message-passing
libraries in a
parallel/distributed
environment

No High-
performanc
e scientific
computing

[116] Introduction
on using
patterns for
SS co

scV
Eu
o.e
<u

Incorporating
reusability and
maintainability

Solution: using design
patterns

No Dynamic-
systems
simulation

[119] Presenting
design
patterns for
SS and
explaining
their benefits

No Computatio
nal life
sciences

[111] Proposing a
framework
for multi -
physics
simulations

co
U

Abstracting and
managing data and
functions in their
modules

Solution: using OO
technology to manage
complexity and to
support reusability

No Multi­
physics
simulation

[67] Integrating
scientific
applications

Software reusability No Builidng
scientifc
software
models

[127] Presenting the
Common
Component
Architecture
for managing
the
complexity in
high-
performance
scientific
computing

Solution: using
component-based
technology to support
reusability and
integration

No High end
scientific
computing

www.manaraa.com

52

[126] Developing
SS
component
technology

Interface design-
integrating code from
different programming
languages

No High-
performanc
e scientific
simulation

[99] Introducing a
tool to
perform rapid
component
prototyping
while
maintaining
robust
software
engineering
practices

The complexity o f
learning the details o f
the component
interface, while using
component-based
technology

No High-
performanc
e scientific
computing

[93] Generative
programming
for SS
developments

Difficulty o f creating
domain-specific
solutions from reusable
software components

Solution: using
generative
programming approach

No Image
retrieval-
poison
solver

[92] Integrating
architectural
constraints
with legacy
SS

Integrating legacy
systems with modem
systems

Solution: use of
architecturally-aware
interfaces to wrap the
scientific code o f the
legacy systems to
integrate them with
modem systems

No Dealing
with legacy
scientific
code

[124] Proposing a
standard to
support
interoperabilit
y among
high-
performance
scientific
components

Observation: use o f
common component
architecture

No High-
performanc
e scientific
computing

[91] Proposing a
framework to
involve the
domain
experts in
design

Observation: engaging
domain experts in
design were found
successful

No General

[31] Details of
developing
software for
computational
biology and
bioinformatic
s

Ex
pe

rie
nc

e
re

po
rt

Observation: well-
design reduce data
complexity, ease access
to modeling tools and
support integrated
access to diverse data
resources

No Computatio
nal biology
and
bioinformat
ics

www.manaraa.com

53

[66] Investigating
the
complexity of
design

Ca
se

st

ud
y

Observation: the
complexity o f a
software system is very
dependent on the design
knowledge o f the
developer

No Scientific
imaging
software

[89] Usability and Managing user No Imaging
user-centered expectation in user- software
designcase centered design developme
study nt

[50] Surveying Observation: SE No General
how scientists practices are more
develop and commonly used for
use SS larger project and teams

[26] Developing uj> Observation: system No General
scientific and 3

C/3 design specification and
computing detailed design
software specifications were

provided by the
designers

Table 11: Summary of the papers discussing design issues
In the following sections more details on the challenges, solution and other

observations identified by our survey concerning the design in SES are presented.

Challenges

According to Gupta et al. [121], the design of a good quality SES needs to tackle

three different modeling challenges. First, the physical modeling in which the

phenomenon and its underlying basics must be understood. Second, the mathematical

modeling, which is the process of formulating physical models, and finally the software

model which refers to the practical solution for the problem inspired by previously built

physical and mathematical models.

According to the experience of Basili et al. [34], many scientists do not have

enough background in object-orientated analysis and design and, subsequently, are not

very skilful in developing complex object-oriented programs.

www.manaraa.com

54

Bemholdt et al. in [125] identified the issue of incorporating componentized

message-passing libraries in a parallel/distributed environment, which needs major

modification of application code and may lead into runtime overhead.

The authors in [117] described the trade-offs in the design of their modeling

framework. They identified “unrealistic user expectations” (or business goals) and

“premature obsolescence” as the main challenges in their design process. They also

reported the difficulty of “incorporating those architectural aspects in the design which do

not comply with the business logic”.

Kendall et al. in their study [101] identified the risks of the design phase of the

high performance computing applications as having difficult requirements and

expectations, and the need for a design which supports modularity, maintainability,

portability, reliability and usability in general.

Possible solutions

The use of design patterns in large SES software development projects have

shown remarkable benefits toward adding more reliability, reusability and better

maintenance as reported by Blilie in [116]. He argued that this is only possible by

introducing the concept of object-oriented design which has its own pros and cons in the

context of SES. Object-oriented languages (e.g., Java and C++) are known to have higher

computational overhead compared to procedural languages (such as Fortran) while, most

of the time, performance and speed are important attributes of a successful end artefact.

That is one of the reasons why most of the current scientific software have been

developed in C and Fortran as reported in [34,116].

www.manaraa.com

55

In another paper by Cickovski et al. [119], again the benefits of using design

patterns such as speed, memory consumption, flexibility, and software maintenance were

mentioned.

Authors in [111] described the use of object-oriented technology for abstracting

and managing the data and functions in their modules. As the size of projects continues to

increase, the benefits of using object-oriented design can outweigh its drawbacks because

the code will become more and more complex to manage. In order to support the

reusability of the code and also in order to integrate the code and tools from different

disciplines, more and more SES developers are adopting the object-oriented technology,

according to the experience of Spinelli et al. [67].

According to Bemholdt et al. [127], using object-oriented methodologies can lead

to a robust framework for different libraries, where components can be fitted and used

toward better managing different parts of the system. Components are reusable software

packages which embody a group of useful functions. Component technology tries to

resolve major issues in software reuse and integration such as barriers in interface design,

physical deployment and integrating code from different programming languages mostly

by removing the language and compiler dependencies as reported in [126] by Epperly et

al. However looking from another perspective, employing component-based technology

for SES design can add to the complexity, as the user of the component needs to leam the

details of interfaces for managing the systems interactions and the conventions of the

component model as reported by Allan et al. in [99].

Arora et al. in their paper [93] described the generative programming approach

for developing SES. In this approach the desired software system can be automatically

www.manaraa.com

56

built from the given specifications and domain-specific solutions can be created from

reusable software components. The approach has been shown to increase the level of

abstraction while decreasing development time and costs.

Woollard et al. in their paper [92] discussed the benefits of software architectures

and proposed the use of architecturally-aware interfaces to wrap the scientific code of the

legacy systems in order to integrate them with modem systems.

Other observations

According to Gentleman et al. [31] “well-designed scientific software should

reduce data complexity, ease access to modeling tools and support integrated access to

diverse data resources at a variety of levels.”

The complexity of a software system is more dependent on the design knowledge

of the developers rather than the application domain or the type of the system that is

being developed as reported by Larsson and Laplante in [66].

In this phase, again as for the implementation, employing software engineering

practices will gain its attention as the project and team size grow according to the survey

by Hannay et al. [50]. Thus in small size projects, to come up with a systematic and

robust system design remains a challenge.

Macaulay et al. [89] investigated the design usability and user-centered design in

their project called Usable Image. For that purpose, they tried to investigate the details

related to their use environment and to increase their user-base to contain all possible

users even outside their labs. They experienced the challenge of managing user

expectations as in user-centered design the user will get used to seeing prompt responses

to their feedbacks.

www.manaraa.com

57

Armstrong et al. [124] proposed a CCA (Common Component Architecture) for

developing high-performance SS as in “high resolution and complex physical sub-models

for turbulence, chemistry, and multiphase flows”. They developed a single component

interface specification for supporting the interactions among scientific components. The

architecture consist of a SIDL (Scientific Interface Definition Language) to describe the

interfaces, CCA ports which defines the communication model for component

interactions and CCA services which is a framework abstraction.

According to Tang’s thesis [26], 45% and 27% of respondents to his survey,

mentioned that they have system design specification and detailed design specifications,

respectively. Software reuse reported to be very popular among the developers as only an

insignificant of the respondents indicated that they are not reusing their software.

In terms of human aspects o f design, putting the domain experts in charge of

designing their own product by providing them with the required tools and techniques is

shown to be a success factor by Fischer et al. [91]. Such a framework is called “meta­

design” by the authors of [91]. In this framework, different techniques and methodologies

are encompassed to give domain experts the freedom of acting as a designer by being

involved with the development process rather that just limiting their role as the end-users

of the system. The human-problem interaction is supported while the focus is not on

building the final solutions. The users/developers are provided with a space in which they

can build their specific solutions to fit their own needs.

www.manaraa.com

58

3.6.2.3 RQ 2.3: What are the challenges and solutions in the implementation phase of
scientific software?

We had 14 papers mentioning the issues of implementation and coding in SES

development. Among the papers we had two surveys, seven concept implementation,

three experience report and two expert views. Table 12 summarizes the information

extracted from these papers.

Ref P aper’s main
focus

Ev
id

en
ce

ty
pe

Challenges Solutions/
O bservations

Specific
to SES

Context/
Domain

[77] Identifying
different types
o f risks in
testing SS
development

Su
rv

ey

Correctness o f the
implementation- poor
code documentation

No A mixture
o f
engineering
and
scientific
disciplines

[26] Developing
scientific and
computing
software

Observation: industry
is much more careful
compared to
academia in terms o f
coding standards

No General

[106] Proposing an
approach to fill
the language
gap in SS

Language
interoperability

No Langauge
interoperab
ility

[111] Proposing a
framework for

No Multi­
physics

multi-physics
simulations eo

Concurrent code
implementation, check­
pointing

No simulation

[122] Proposing the
use o f a
compiler to
automatically
optimize
software library
implementation
s

ao
£o

”5.
6
B.ooso
U

Limitation o f software
libraries

Solution: using
simple declarative
annotation language
that describes certain
aspects o f a library’s
implementation to
optimize the use o f
the libraries

No Scientifc
library
implementa
tion

[98] Component-
based
architecture in
quantum
chemistry SC

Implementing and
adopting uniform
interfaces in component-
based architecture-
managing software
dependencies and build
systems

Solution: building a
generic package that
enclosed uniform
interfaces to manage
software
dependencies

No Quantom
chemistry
application
developme
nt

www.manaraa.com

59

[123] Proposing a
new
architecture for
SC application
development

Observation:
proposing an
infrastructure that
provides the user
with an easy
programming model
and API and
incorporates
different types of
computational
modules

No General

[110] Using computer
algebra systems
to automatically
generate a
computer
program

Observation: using
computer algebra
systems

No Generating
scietific
code

[130] Automatic SS
scripting

Observation:
developing an
extensible compiler
to automate the
integration of
compiled code with
scripting language
interpreters

No Large-scale
parallel
molecular
dynamics
simulations

[96] Automating
scientific
workflow

Ex
pe

rie
nc

e
re

po
rt

Software integration-
managing different
scientific activities

Solution: use of
workflow
management systems

Yes Developing
scientific
workflow
manageme
nt
system for
collecting,
analyzing,
and
managing
data
produced
by sensors
and other
instruments

[94] Proposing and
characterizing
workflow
systems

Assembling scientific
code into an executable
system

Yes Parallel
computatio
n over data
sets

[131] Using python in
SS development

Managing huge amount
o f data- dealing with
frequent software
changes

Solution: addressing
implementation
problems by using
Python

No Large-scale
physics
application

[109] Problem solving
environments

Ex
pe

rt
vi

ew

Difficulty o f making
physical simulations
reliable

Solution: using
problem solving
environments

No General

www.manaraa.com

60

[105] Developing Observation: highly No Automotiv
software for optimized code e software
automotive makes reuse and developme
industry maintenance quite nt

hard

Tablel2: Summary of the papers discuss ng implementation issues
In the following sections more details on the challenges, solution and other

observations concerning the implementation of SES are presented.

Challenges

The implementation phase of SES development is also challenging as certain

types of risks can be identified in this stage according to Sanders and Kelly [77]. The

authors have identified three types of risks related to code which makes testing more

difficult. The first one is risk to correctness and is mainly concerned with the accuracy of

the calculations, which is a very critical quality factor. The second one is the risk from

poor code documentation, which was identified to be very common in ESS development.

The last one is risk to verification meaning that we need to ensure that the code solves the

models or the desired equations in a right way. This last risk is a major problem as the

scientists usually do not know how to test their code or they are even unaware of the need

for that.

Also the problem of language interoperability is an issue that happens when the

developer wants to merge the core of existing scientific software with the software tools

which are mostly written in high level languages such as C++, Java or C# [106].

In a paper by Jiao et al. [I l l] , different challenges of implementing a large-scale

numeric software called Roccom for multi-physics simulations were mentioned. Issues

such as concurrent development of different modules, programming language

interoperability, complexity of coupling schemes, check-pointing and plug-and-play

www.manaraa.com

61

capability are discussed and then object-oriented design and architecture of the system is

presented.

Guyer et al. [122] in their paper described the weaknesses and performance

limitations of software libraries such as not being able to use the library implementation,

which suites the needs of a particular client. On the other hand, making the library

generalizable reduces its efficiency.

Kenny et al. in [98] described the challenge of implementing and adopting

uniform interfaces in component-based architecture to enable interchangeability and

interoperability among different packages. They mentioned “managing software

dependencies and build systems” as another challenge of large-scale systems.

Possible solutions

Some tools and packages have already been developed to resolve the challenges

of language interoperability, e.g., Chasm [106] and CLI [133], but still there exists room

for further investigations and studies in this area.

Guyer et al. in their paper [122], explained how, by using “a simple declarative

annotation language that describes certain aspects of a library’s implementation” the

libraries can be used in an optimized way.

Kenny et al. in [98], addressed the issue of managing software dependencies by

building a generic package, which enclosed uniform interfaces and by creating a library

which had the glue code to access the interfaces in the supported programming

languages.

The use of workflow systems in order to support the scientist’s work and address

the challenges of developing SES were discussed in some papers [94, 96]. Vidger [96]

www.manaraa.com

62

defined a workflow system as “commonly used, well-defined sequences of data

manipulation procedures, which involved activities such as numeric transformations,

format changes, analysis, and file management”. Woollard et al. [94] proposed the use of

workflow environments for a key activity termed “orchestration” which is explained as

“assembling scientific code into an executable system with which to experiment”. In their

paper they also discussed the characterization of workflow systems as used during

discovery, production and distribution of science. Vidger et al. [96] discussed their

experience of automating a workflow management system and described its benefits for

supporting their software such as ease o f use, management of their activities and

integration of their software tools.

Problem solving environments (PSE) was discussed by Houstis et al. [109]. They

defined PSE as “a computer system that provides all the computational facilities

necessary to solve a target class of problems” to address some difficulties of

computational science such as the difficulty of physical simulation, high cost and time to

develop the software, increase the availability of SES components and reliability of

simulations.

Other observations

Beazley et al. [131] in their paper described their experience of using Python for

developing a large-scale application for parallel processing systems. They identified

several problems that could be addressed by using Python. The first problem occurred as

their simulations usually generate huge amount of data which needed to be analyzed. To

perform such analysis on user’s workstation or to buy everyone their own personal

desktop supercomputer didn’t seem feasible. The second challenge emerged as they were

www.manaraa.com

63

required to make constant changes to the application code (written in C), which they

found to be very tedious with low flexibility.

Beazley in his paper [130] discussed developing an extensible compiler to

automate the integration of compiled code with scripting language interpreters.

Integrating compiled code with an interpreter is very common challenge when using

scripting languages.

In the automotive industry, a huge amount o f code is still written by hand [105].

There are some tools for generating code, though those tools are not efficient enough to

produce optimal code. On the other hand “highly optimized code makes reuse and

maintenance quite hard” as stated by Broy [105].

According to Tang’s thesis [26], in terms of coding standards, it was concluded

that industry is much more careful than academia with respect to implementation

standards. 31%, 66% and 69% of the respondents reported the use of specific tools in

code generating, program debugging and version control.

Arnold et al. [123] in their paper has described their proposed SCAI (Scientific

Computing Application Infrastructure). This infrastructure provides the user (novice

non-computer scientists) with an easy programming model and API as well as

incorporation of different types of computational modules. Also it supports different

granularities of computational modules. Module complexities are hidden while they are

easily accessible. Scripting is supported to let the user combine modules. The

infrastructure also support different languages and keeps the performance optimized.

Dall’Osso [110] in his papers discussed the advantages of using CASs (Computer

Algebra Systems) in automatically generating programs. The purpose of these systems

www.manaraa.com

64

is to enable the people who are just familiar with the physics of the problem to write code

without being involved with numerical algorithms. The CAS approach supports

incremental development and thus the problem formulation can be improved after the

correctness of the current version is verified. Also if a change occurs and the program

needs to be updated, just the specifications from which the program is created needs to be

updated.

3.6.2.4 RQ 2.4: What are the challenges and solutions in testing scientific software?

We had 11 papers presenting the issues related to testing SES, including one

expert view, two case study, two surveys, one experiment and five concept

implementations. Table 13 summarizes the information related to these papers.

Ref P aper’s
main focus

VuS w
« a, S >»
> ~

w

Challenges Solutions/Observations Specific
to SES

Context/
Domain

[78] Dealing with
risk

Su
rv

ey

- Lack o f test oracles

- Complexity o f
functionality verification

- Complexity o f

Yes A mixture
of
engineerin
g and
scientific
disciplines

[23] Identification
of the steps
and tools in
developing
high-
performance
software

Ca
se

st

ud
y

software validation Yes High
performan
ce
computing

[33] Improving
SS
development

Ex
pe

rt
vi

ew

Yes General

[97] Modeling the
input space
for testing

Ca
se

st

ud
y Manual selection o f

enough test cases
Solution: a model to
capture the dependencies
among the input space
for automated test
generation

No
Multiphys
ics
simulation

www.manaraa.com

65

[76] Proposing
mutation
sensitivity
testing for
testing SES

Co
nc

ep
t

im
pl

.

Dealing with Tolerance
problem

No General

[25] Presenting a
methodology
for
development
o f the
requirements
for general
purpose
scientific
computing
software

Testing continuous
values

No General

[75] Testing SS Large number of
required test cases

Observation: small
number o f well-chosen
test cases may reveal a
high percentage of code
faults

No General

[85] Automated
verification
and
validation
technique for
image
segmentation

Verification and
validation o f medical
image segmentation

No Image
segmentat
ion
software

[84] Proposing
the use o f
code
mutation for
testing SS

The difficulty o f
detecting silent faults
(i.e. code faults, not
scientific calculation
inaccuracy)

Solution: mutation
sensitivity testing
(reducing error tolerance
is much more effective
than running more tests)

Yes General

[50] Surveying
how
scientists
develop and
use SS

Su
rv

ey

Observation: separation
o f software bugs from
model errors are not
addressed yet by
software testing
community

No General

[128] Investigating
errors in SS

Ex
pe

rim
en

t

Observation: SES code
is not as accurate as
expected

Yes Seismic
data
Processin
g

Table 13: Summary of the papers discussing testing issues

In the following sections more details on the challenges, solution and other

observations concerning the testing in SES are presented.

Challenges

www.manaraa.com

66

Testing scientific software in practice is a critical task because it is a two-fold

problem. Firstly, ’’doing the right thing” or validation of what is really needed to be done

is not an easy task, according to Segal and Morris [33], for the software engineer who is

not as knowledgeable as the domain expert. Secondly, similar to any other software

application, the need to test for “doing things right” or verification of the software

remains another challenge in testing SES. This issue as a whole is not well addressed by

scientists as is discussed by Sanders et al. [78]: “If the software’s purpose shifts away

from just showing the theory’s viability, risk shifts to the implementation. At this point,

testing must assess the implementation, not the theory. Most scientists miss this shift“.

In the cases, where the entire purpose of developing the software is to solve a

problem that does not currently have a solution, the validation of the end product is very

complex, if not impossible, as stated by Carver et al. [23].

Segal and Morris [33] also stated that the lack of “test oracle (expected output)” is

a main factor that makes testing SES difficult in many domains. Most of the time, valid

data against which the output of the software can be compared does not exists and it is

very hard to build a rigorous test oracle. This will cause a challenge called “tolerance

problem” as reported by Hook and Kelly in [76], which is mainly the result o f having

uncertain oracles and other errors such as rounding error [83] caused by floating point

representation.

As reported by Smith in [25], the fact that some of scientific applications use

continuous values in input and calculation further adds to the complexity in the validation

of these systems. This is since success in one test case does not imply success in another

test case containing nearby values, since that nearby value may be a boundary value in

www.manaraa.com

67

the defined scope of the variable under test or a singular value which makes one equation

undefined or cause a division by zero at some point.

As reported by Vilkomir et al. [97], in most simulation software such as

multiphysics, the huge number of input values and parameters make the manual selection

of sufficient test cases very complex.

Another major testing-related challenge, reported in [75] by Hook and Kelly, is

the large number of test cases required when following any standard software testing

technique described in the literature, e.g., category-partitioning, or code coverage-based

testing.

Frounchi et al. [85] have discussed the challenge of verification and validation of

medical image segmentation, which is usually performed manually by an expert. In this

verification and validation process, if the result is not satisfactory, the segmentation

algorithm needs to be revised and again the outcome should be evaluated by the expert in

an iterative manner.

Possible solutions

Hook, in his thesis [84], proposed employing “mutation sensitivity testing” to

resolve the challenge of detecting “silent faults” in scientific code, i.e. code faults, not

scientific calculation inaccuracy. In this method, the pass/fail criterion (i.e., test oracle) is

not based on the equality of the expected and actual outcomes (often, outputs). Rather,

the pass/fail criterion is based on the mutation sensitivity of each test case. This way, the

traditional mutation testing can be used as a tool for computational software testing.

www.manaraa.com

68

To tackle the issue of manual selection of enough test cases, Vilkomir et al. [97]

proposed a model which captures the dependencies among the input space and then test

cases can be generated automatically from the model.

Other observations

Initial research results by Hook and Kelly [75] suggest that a small number of

well-chosen test cases may reveal a high percentage of code faults in scientific software

and allow scientists to increase their confidence.

More recently, there have been further developments in the area of testing SES.

For example, a testing process model for scientific software by Hook and Kelly was

presented in [75]. The model consists of three different levels of activities each of which

address a main need in testing. The first level assesses whether the software can be used

by scientists or engineers in order to get their work done. This level is called “scientific

validation”. The second level which is called “algorithm verification” which assesses the

relevance and the strength of the methods and approaches used to solve the problem of

scientists and engineers. The third level or the “code scrutinization” tries to detect code

faults and other problems that occur while using computer languages.

Hannay et al. reported in [50] that scientific software testing raises issues that

have not yet been addressed sufficiently by the software testing community. Issues such

as separating software bugs from model errors and approximation errors or not having a

certain test oracle available are the issues that can not be easily addresses just by referring

to common software testing practices and approaches.

In [128] Hatton reported the details of two experiments conducted to measure the

accuracy of SES code. The first experiment aimed at measure the consistency of millions

www.manaraa.com

69

lines of code written in C and Fortran. The second aimed at measuring the level of

dynamic disagreement between different implementations of the same algorithms

working with the same input data and the same parameters. As a result they found out

that code is not as accurate as expected.

We also experienced the same challenges as reported in the literature. Our

experience in our ongoing optimization software development project for oil pipelines’

pump operation [132], again provides empirical evidence on the issues of testing SES. As

part of the project, we are building an optimization algorithm and tool (details in [134])

which takes as input the pipelines information (e.g., topography, pump settings, etc.) and

provides as output an optimal operational regime (configuration) for pump speeds which

would deliver the contracted volume of oil product(s) while minimizing the dollar cost of

electricity used to pump the product(s). The back-end of this optimization tool is

developed using a commercial optimization solver, called LINDO [135], and a .Net-

based front-end (GUI) is utilized.

Validating the outputs generated by this optimization algorithm and tool and

whether they are actually optimal is not trivial. One option is the real-world log data

however it is almost certain that real-world settings were not optimal. As another option,

we are planning to develop another optimization tool based on other optimization

techniques (e.g., genetic algorithms).

www.manaraa.com

70

3.6.2.5 RQ 2.5: What are the challenges and solutions in maintenance stage of scientific
software?

We found six papers mentioning the issue related to the maintenance of SES,

including two surveys, two concept implementations, one experience report and one

expert view. Table 14 summarizes the information presented in these papers.

Ref P aper’s
main focus

Ev
id

en
ce

tv
n

e
Challenges Solutions/Observations Specific

To SES
Context/
Domain

[50] Surveying
how scientists
develop and
use SS

Su
rv

ey

Ignoring
maintenance while
developing

Observation:
maintenance o f SES is
moderately important

No General

[26] Developing
scientific and
computing
software

Observation: the lifetime
o f typical SES is long

No General

[120] Integrating a
technological
and design
approach to
support SS
evolution

Co
nc

ep
t

im
pl

em
.

Dealing with fast
evolving domains

Solution: defining
different iterations in
software development

No Biology

[99] Introducing a
tool to
perform rapid
component
prototyping
while
maintaining
robust
software
engineering
practices

Addressing the
issues o f component
glue code

No High-
performance
scientific
computing

[131] Using python
in SS
development

Ex
pe

r.
re

p. Dealing with the
situation where
different users
modified their own
copy o f the software

No Large-scale
physics
application

[105] Developing
software for
automotive
industry

■C a

UJ 5

Long-term
maintenance is
required

No Automotive
software
development

Table 14: Summary of the papers discussing maintenance issues

www.manaraa.com

71

In the following sections more details on the challenges, solution and other

observations concerning the maintenance in SES are presented.

Challenges

One of the challenges of maintaining scientific and engineering code emerges

from the fact that the focus in most of SES developments is primarily on developing

working software in shortest possible time. This way, most of the software engineering

practices, which came to existence to help manage the complexity of maintaining SES, is

usually ignored as reported in the survey by Hannay et al. [50].

Allan et al. in their paper [99] discussed the difficulty of maintenance even when

small amount of code is needed to be added to reusable components and libraries.

Addressing the issue of component glue code and software build process is reported by

the authors to be tedious and error-prone.

Beazley et al. [131] in their paper described the challenge of development and

maintenance of their software. They were a small group of people using the application,

thus “different users had their own private copies o f the software that had been modified

in some manner” and that led to a “maintenance nightmare that made it almost impossible

to update the software or apply bug-fixes in a consistent manner”.

Long term maintenance is mentioned as a challenge in software engineering for

automotive industry as “the cars are supposed to be in operation over more than two or

three decades” [105].

Possible solutions

In general, the issues of software evolution are addressed by defining iterations of

software development or maintenance cycles as suggested by Letondal and Zdun in

www.manaraa.com

72

[120], but this is not sufficient to resolve the issue of having fast evolving domains,

which will result in the need for fast evolving software.

Other observations

According to the survey by Tang [26], the lifetime of typical SES is long as just

4% of the software were reported to have lifetime shorter than one year. 70% of SES

software is planned to be used for more than 6 years and 22% has a lifetime of more than

20 years. Also based on a recent survey by Hanney et al. [50], the importance of

scientific software maintenance is ranked moderately important by the scientists who

participated in the survey.

SES maintenance is the phase which has not gained much attention from

researchers (the number of publications focusing on this phase is noticeably low),

regardless of its undeniable importance.

3.6.2.6 RQ 2.6: What are the challenges and solutions in cooperation and human-related
factors of scientific software projects?

In our pool of papers, seven papers reported the issues regarding the cooperation

and human-related factors in SES development including one experience report, two filed

studies, one concept implementation, one expert view and one survey, as summarized in

Table 15. In the following sections more details on the challenges, solution and other

observations concerning the cooperation and human-related issues in SES development

are presented.

Challenges

SES developers come from different disciplines in science and engineering such

as physics, biology applied math, civil engineering and computer science. The “large

www.manaraa.com

73

variability in specialized backgrounds makes collaborative software development

difficult” as stated by Bartlett [87].

Ref P aper’s main
focus

4»
U

| iu

Challenges Solutions/
O bservations

Specific
to SES

Context/
Domain

[87] Proposing
different
integration
strategies for
computational
science and
engineering
software

Ex
pe

rie
nc

e
re

po
rt

Collaboration among
various disciplines is
problematic

No General

[81] Culture and
cooperation
problems in SS
development

Fie
ld

st
ud

y

Communication issues
between management
and developers

No Biology

[80] Challenges o f
software
engineers

User engagement in
design and
development

No Software
engineers
developing
software
for space
scientists
and
biologists

[114] Managing
individualist
programmer

Co
n.

 i
m

p.

Managing
programmers who
prefer to develop in
isolation

Solution: Following
management policies

No General

[3] Identification
of the gap
between
software
engineers and
scientists

Ex
pe

rt
vi

ew

Observation:
developers can be
classified under 3
groups: industrial
developers, scientific
and engineering
researchers and students

Yes General

[5] Identification
o f problematic
issues in
scientific
computing

Observation:
developers need to be
trained to successfully
employ SE
methodologies

No General

[50] Surveying how
scientists
develop and
use SS Su

rv
ey

Observation: the lack
o f formal training is
very common

No General

Table 15: Summary of the papers discussing cooperation and human-related issues

www.manaraa.com

74

In a field study [81], Segal has identified communication issues between the

management staff and developers. These issues become problematic particularly because

of the interference of the managers in technical issues. In one industrial setting, Segal

[81] reported that the management board was expected to negotiate, prioritize and make

final decisions about the incomplete and ambiguous requirements, but they failed to do so

properly. The developers often interpret such a failure as interference in technical issues

without any noticeable success in resolving them. On the other hand, the developers often

fail to collaborate with the lab scientists because of not being managed properly from a

higher practical level.

The challenge of user engagement in design and development of SES considering

the fact that the majority of scientific software users are scientists is important to tackle

stated by Segal in [80]. The reason is quite obvious: the lack of software engineering

knowledge about the problem and the problem domain.

Possible solutions

Hovendon et al. [114] recommended that in terms of managing and directing the

project to the right path for building high quality products, the management policies are

of great importance specially to harmonize the individual programmers toward the same

goal.

Other observations

Kelly in her paper [3] divided the scientific developers into three major groups:

(1) the industrial developers who are engaged with applications related to their domain of

expertise, (2) scientific researchers and (3) students who will be identified as one of the

two other mentioned groups based on their choice of career. Each of these three groups

www.manaraa.com

75

have their own approach toward application development, but ail of them need to be

properly aware and academically trained in order for employing software engineering

methodologies to experience successful development practices as Wilson stated in [5].

According to the survey by Erskine et al. [50], the lack of formal training is very

common and the usual training that scientists might experience is offered by the ,

computer science department, which is mostly domain-independent and general as

reported by Kelly in [3].

3.6.3 RQ 3- What are the best practices in SES development?

Because of being very dependent to the specific characteristics of a particular

discipline for which the software is being developed, it is very difficult to propose a

unique and universal framework or methodology which can well be applicable to SES

development in all domains. However we have found several practices suggested by

researchers and experts who could efficiently develop quality products. These practices

are grouped and tabulated in Table 16.

Best Practices Context/
Domain

Ref

Requirements Having a user and system requirement document
to specify the functional, performance and the
interface requirements of the software

General [51]

Responding to immediate emerging requirements
and needs rather than building a complete
solution

Scientific workflow
management
system
development

[90]

Determining the schedules and resource levels
based on requirements

Large scale multi­
physics
computational
simulations

[129]

Design Having software design documents General [51]
Using design patterns Plasma physics [118]
Using component-based software architecture Quantom chemistry

- High-performance
and high-end

[98,
124-
127]

www.manaraa.com

76

scientific
computing -

- Designing in a way which fits in the
requirements of the scientists
- Designing to support extensibility and
customization
- Designing to meet local needs while making the
product easy to extend to cover more general
needs

Scientific workflow
management
system
development

[90]

Designing the project upfront Biology [103]
Implementation - Separation of the scientific calculation code

from the user interface code and the data
- Writing simple code
- Having the code reviewed by other scientists

General [74]

- Pair programming
- Creating source-centric documents

General [88]

Building core capabilities promptly Scientific workflow
management
system
development

[90]

Testing Testing SES validity General - Weather
forcasting

[29,
74]

Writing tests first and running them often (test-
driven development)

General [88]

Having a test plan on the development of the
testing strategy and test case generation

General [51]

Developing and executing a verification and
validation program

Large scale multi­
physics
computational
simulations

[129]

Development
Process

Being organized in different stages and activities Large scale multi-
physics
computational
simulations -
General

[74,
129]

- Performing continuous process improvement
- Managing the repositories
- Using checklists for repeated activities

General [88]

Using configuration management tools General - Weather
forcasting

[29,
881

Using a formal release plan General [88]
Having a management plan and applying project
management techniques

General - Biology [51,
103]

Having quality control and assurance plan General - Biology [51,
103]

Listening to customer Weather forcasting [29]
Documenting the program and the key issues Biology [103]
- Performing scheduling and estimation of Large scale multi- [129]

www.manaraa.com

77

resources based on code development
experience
- Identifying the risks

physics
computational
simulations

Communication
and Human
Aspects

- Using issue-tracking software
- Communicating by mailing lists

General [88]

- Having highly competent staff
- Investing in people with training and support

Large scale multi­
physics
computational
simulations

[129]

Deployment
and
Maintenance

- Having the system documentation
- Preparing the user manual and installation
guide
- Running a web site to provide the users main
contact points for bug reporting and release
developments
- Having a maintenance guide to manage bug
reports, perform regression testing and
redistribute the system

General [51]

Maintenance with customer focus Large scale multi­
physics
computational
simulations

[129]

Table 16: Best practices in SES development

3.7 Discussions on threats to validity of the results

There are always some sources o f threats to the validity of a review, which result

in the inaccuracy of the results. One primary source of inaccuracy, which is called threat

to internal validity, is imprecise data extraction. To prevent this threat, we did our best to

define our research questions as detailed as possible by including sufficient sub-questions

to make sure that we address those questions precisely and with the exact related piece of

information extracted from the primary studies. Also, we have specified the type of

information (evidence) which is needed to address the review questions for each of the

questions. By defining this framework, not only we can avoid biased judgments, but we

can also discuss disagreements in depth with respect to the details which are extracted

from the publications. This approach also prevents the threats to the construct validity

www.manaraa.com

78

(observation validity) of the results, which occurs when the observation method does not

exactly capture what it requires to observe [136].

Threats to the external validity are conditions that limit the generalizability of the

results. In this work we presented possible solutions to particular SES development

challenges besides the best practices as applicable to certain types of the software

systems. Our primary studies include publications covering a variety of domains and

different types of software systems, yet certain conditions as applied to some software

systems might occur, which are not considered in the publications, while proposing the

solutions and practices to address the challenges. This type of inaccuracy, as well as

another type of construct validity, which is called intentional validity (does the constructs

we choose adequately represent what we intend to study? [136]) occurs when the

repository of the publications is not complete and it does not contain all the relevant

publications. We tried to decrease the possibility of this risk by searching through all the

famous electrical resources and publishers by a comprehensive and precise search string

which well represents the topic of this review. As we mostly select top journal papers and

conference proceedings it is possible that we have missed certain relevant information

when only presented in theses and technical reports. Also as we searched for the

publications based on their title, when the title of the primary study does not match with

our search key words, the article can not be found. As mentioned in the corresponding

section, we defined our set of search key words in a way to cover all relevant titles.

3.8 Chapter Summary

In this section we presented our SLR on the role of software engineering in the

development of SES. Developing SES is different from conventional software

www.manaraa.com

79

development practices mostly because its primary aim is to help the scientists and

engineers better understand, analyze and resolve their domain issues and thus is highly

tied with the knowledge and expertise of scientists as the real owners of the software.

For this review we designed a set of important research questions mostly on the

challenges of SES development, extracted the relevant info from primary studies and then

presented the potential solutions and other observations found in the literature. Best

practices as applicable to different problem domains and various projects were also

tabulated and summarised for practitioners.

The next chapter will provide basic information about the case study of

developing engineering software for optimization of pipeline operation. The case study

aims at providing evidence on the challenges and solutions for the development of

engineering software.

www.manaraa.com

80

Chapter Four: Overview of the Oil Pipeline Operation Optimization Software

Development Case Study

In this chapter the overview of the case study we undertook, which was aimed at

developing engineering software for the energy industry is provided. We start by

introducing the main project and the team members in Section 4.1. In Section 4.2, the

case study goals and research questions are presented and discussed, followed by the

main domain terminology in Section 4.3, used to communicate with the domain experts.

A brief description of the optimization problem is offered in Section 4.4 and overview of

the pipeline under study is presented in Section 4.5.

4.1 Project and Team Members

The amount of energy required to operate oil distribution systems is huge. This

energy is in the form of either electrical or fossil fuels, and is an enormous portion of the

total expenses in transportation and distribution companies. The reduction of this energy

is valuable in the sense that it saves a great amount of money for the companies as well as

preserving the environmental cleanness by burning less fossil fuel. The energy reduction

is the result of optimal operation of the oil distribution system. To achieve such optimal

operation, the distribution system needs to be modeled mathematically and then that

model can be optimized using a proper optimization method.

This optimization problem as a part of developing intelligent software solutions

for energy industry along with the opportunity of working with industrial partners

motivated our research group to develop an engineering software application which

provides the oil distribution system operators with optimal operation settings as well as

www.manaraa.com

81

the decision support system to assist them in making proper choices. The system was

planned to be developed for an energy transportation and service provider company

located in Calgary named Pembina [137]. The team members collaborating with each

other in this project include a principle investigator, two M.Sc students, a domain expert

and a technical consultant. These roles along with the corresponding expertise are

tabulated in Table 17.

Role Description
Principle investigator Software engineer and optimization expert (the author’s

advisor)
M. Sc. student Software engineer (the author)
Master student Optimization problem modeling and formulation, with partial

domain expertise
Domain expert Main correspondent in the company, pipeline operation expert
Technical consultant
/Post-Doc. Fellow

Optimization and pipeline operation expert

Table 17: Team member roles and their expertise

4.2 Case Study Research Process

In this section the process of conducting the case study is described based on the

guidelines provided in [138]. We went through three steps for this study: (1) design of the

case study, (2) collection of the evidence, throughout the case study and (3) reporting the

case study findings. Each of these steps will be discussed in the upcoming sub-sections.

4.2.1 Case study design

In the beginning of the case study the plan for conducting the case study should

be designed. Certain elements are required to be defined in the plan [138], such as

objective of the case study, the case which is planned to be studied and research questions

of the study. These elements will be discussed in the following sub-sections.

www.manaraa.com

82

4.2.1.1 Objective of the Case Study

Objective of the case study describes what we expect to achieve out of the study.

This case study, as a part of the major project, which was introduced in the Section 4.1,

aims at developing a software system to provide the optimal operation regime and the

decision support for the user by visualising the optimal pipeline parameters with different

pipeline operation settings. These features are offered by the software we designed and

developed in collaboration with another master student in our research group, who

provided us with the optimization formulation module. The interested reader in the

details of the optimization algorithm and pipeline hydraulics and operational formulations

can refer to [139]. The details of the software we designed and developed to embed the

optimization engine, which provides the user with some decision support features are

given in Chapter 5, 6 and 7. The objective of the case study can be summarized as

“assessment of challenges and lessons leamt in the development of an oil pipeline

operation optimization and decision support software and its overlap with the SLR

findings”.

4.2.1.2 The Case

The case, describes what is planned to be investigated under the study. This is

referred to as any “contemporary phenomenon in its real-life context” in [138]. Thus,

here we consider “the development of the optimization software and decision support

system for oil industry” as our case.

4.2.1.3 Research Questions

In parallel with developing the optimization software, we also defined 2 research

questions to be investigated in the case study. The research questions are inspired by the

www.manaraa.com

findings of the SLR in different stages of the development and we summarize them as

follows:

• Case Study RQ1: What are the particular challenges of developing oil pipeline

operation optimization software?

• Case Study RQ2: How the challenges of developing oil pipeline operation

optimization software can be addressed?

Based on the findings of the SLR, the research questions can be further refined to a set of

hypotheses as summarized below.

Hypotheses based on the Cases Study RQ1:

• H l.l: Gaining domain expertise is time-consuming and difficult for software

engineer, compared to learning the basics of typical non-scientific/non-

engineering domains.

• HI.2: The requirements cannot be decided in early stages of the development as

they evolve throughout the process.

• H I.3: Test oracles are uncertain, as often there is no prior solution for the problem

at hand.

Hypotheses based on the Cases Study RQ2:

• H2.1: Regular meetings with domain experts are a beneficial practice for

validation of the requirements.

• H2.2: Adopting iterative approach fits the “evolving and emerging requirement”

nature of engineering software.

www.manaraa.com

84

• H2.3: Adopting OO methodology, can pave the way for using design and

architectural patterns besides giving a better management over data and functions.

• H2.4: The challenge of having uncertain oracles can be addressed by employing

another independent method for solving the engineering problem, so that the

similarities between the results achieved from two methods can be investigated to

add more to the validity of the solutions.

4.2.1.4 Data Collection Method

In order to address the research questions described before, we choose to collect

the data based on observations in different stages of developing the software, which is

one of the qualitative methods of data collection in software engineering [140].

According to [138], the benefit of observations is mentioned to be the possibility of

providing a deep understanding of the phenomenon under study.

We followed two approaches in our observations for data collection [138]: (1)

“think aloud” approach, where the subjects are repeatedly reminded to think aloud by

asking questions such as “What is your strategy?” or “What are you thinking to?”.

Subjects in our case are software engineer and domain experts. (2) Observation in

meetings is another approach, where the observation data is generated during the

meetings when participants interact with each other.

4.2.2 Collection o f the Evidence

According to the data collection method described in previous section, we

observed and recorded our data in different stages of the development. The evidence

generated through meetings with our industrial partner for learning the domain basics and

requirement elicitation, as well as our own observations of the experience of designing,

www.manaraa.com

85

implementing and testing of the software, was collected. Also the thoughts of another

member of our research group, who was responsible for the development of the

optimization module, was frequently gathered, using “think aloud” approach.

4.2.3 Reporting

In Section 5.8, 6.3 and 7.4, for each stage of application development, we have

summarized our observations regarding the certain challenges of developing this

engineering software besides presenting the solutions and observations we had during the

life cycle of the application.

4.3 Basic Domain Terminology

The objective of the project is to develop software for optimizing pump unit

selection which provides the operator with the optimal operation strategy for all the pump

stations in the pipeline distribution system while maintaining the desired delivery

schedule [139],

In this section we present basic descriptions of the concepts we had in our target

domain. This domain terminology is required for proper understanding of the problem

domain while communicating with domain experts and reading technical documents.

Also it assisted us in the general understanding of the problem and gathering the required

information for this study.

4.3.1 Pipeline Systems

A pipeline network is a system of pipe segments, pumps, values and other related

instruments which are used for delivering fluid or gas products from source points to

designated target points. A snapshot taken from the Alaska pipeline is shown in Figure

12.

www.manaraa.com

86

Figure 12: Snapshot taken from Alaska pipeline (taken from [141])

Pipelines in this problem are used to receive oil products and deliver it to several

terminals at a predefined schedule that includes target volumes over given time periods.

Typically, storage is available at the initial port and several intermediate locations. The

pipeline scheduler is provided with a set of contractual constraints that define the target

deliveries at various locations. The system is supposed to generate efficient configuration

and operating regimes for the system based on problem objective, which is the reduction

of power expenses.

4.3.2 Pump

Pipeline systems usually are spread along very large distances. As an example we

can refer to the length of the oil pipelines of the largest operator in North America

(Enbridge Inc.) which is over 5,000 km [142]. Thus products may require travelling a

very long distance to reach their certain target point. Factors such as friction between the

product and the pipeline internal surface and differences in altitude result in loss of

primary pressure which was used to pump the products in the pipeline at source points.

www.manaraa.com

87

This pressure should not fall under a certain threshold, or the product flow rate in the

pipeline will be corrupted. Pumps are used along the pipeline in order to keep the

products moving in pipeline with a reasonable flow rate, in order to meet the contractual

constraints in the right time.

Pumps in this problem are either fixed speed or variable speed centrifugal pumps.

In variable speed pumps the operating speed can be adjusted as required, while in case of

fixed speed pumps, the pump operated with a certain constant speed.

Pump operating characteristics are typically demonstrated by pump curves which

are provided by the pump manufacturer. These curves depict the relationships between

the following parameters [143]:

- Pressure produced by the pump which is called head pressure. Head is measured

by the height of liquid stub. It is basically the difference between pump suction and pump

discharge pressure,

- Flow rate is the amount of liquid passed through the pump in the certain time

unit,

- Speed by which the pump turbine is rotating (rounds per minute),

- Pump Efficiency is the measure of how efficient the input electrical energy is

transformed to output pressure,

www.manaraa.com

88

Nw» IhwfiMwT: ikm Hm « Tyft: iW-IMl
CStal: h tt ifw Am C«. M H M feir. N i l
IHMf M w k r : PMP-II1 fci f d lt r PI— It : 22.9 Im Ii i i
C ata M u w l i r : EC 1*1-1

8 2 8 . 100
8 0

9 0 2 4

2 9 1

1 8 8 -

1 2 9 .6

—HP
2 0 8 0 . 9 8 8 0 . 0 0 7 0 . 1 1 9 6 0 . 1 4 0 9 0 . 1 7 0 4 0 . 2 0 8 3 0 . 2 3 0 2 0 . 2 6 0 1 0 . 2 0 0 0 0 .

How Rate, gaUMn

Figure 13: Sample pump curve, head vs. flow rate and efficiency vs. flow rate (taken

from [143])

A sample pump curve is shown in Figure 13. It is worth noting that the pump

characteristics are subject to change after being used for a long time and need to be

updated.

4.3.3 Pump Station

Pump Station is a location where one or more pumps are placed. Pumps typically

are connected serially or in a parallel fashion. There exist cases where the connection

between pumps in the system is even more complex with some of the pumps connected

parallel and others serially. Every pump station can have multiple inlets and outlets. A

snapshot taken from a pump station which has four pumps is shown in Figure 14.

www.manaraa.com

89

Figure 14: A pump station with four pumps (photo by Sergei Grits [144])

4.3.4 Control Valves

In order to balance the pressure or flow rates in specific points of the pipeline,

control valves are used to maintain the desired condition at those points. Valves are

mostly placed in the positions where the pressure needs to be reduced. A snapshot of two

control valves, taken from an oil pipeline is shown in Figure 15.

Figure 15: Oil pipeline control valves (adapted from [145])

4.3.5 Power Contract and Power Rate

Power Suppliers are companies providing electrical or other kind of power for the

pipeline system. Every Power Supplier supplies electricity for one or more pump stations,

www.manaraa.com

90

while one pump station is usually supported by one power supplier. Power cost is

negotiated with every power supplier and the final agreement is signed in power contracts

for a certain period of time.

Power contracts consist of various cost rates and their thresholds that are used to

calculate the power consumption cost for running each pump. When a threshold for the

first cost rate is reached, the second cost rate is applied until the second threshold is

reached and so on. Additionally, power contracts have their start and end dates which

define the period in which the contract is valid. Generally the power contracts can be

more complex by having different cost rates within a day, week or month.

In our optimization problem, we considered one threshold for electricity cost

rates. Two sample electricity cost rates of this type are shown in Figure 16.

JS
S 12 -

~ 10 -e 10«
u

V 8 -
18

ts 6 ' ' o
” — E lec t r ic i tv r a t e t y p e 2

g 4
U

X 5 -1 2 Jjf

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

Consumption pow er (kw)

Figure 16: Two sample types of electricity cost rates

4.4 Overview of the Optimization Module

The aim of optimization in this project was to find the optimal operation setting of

the oil pipeline. This is known to be a complicated problem because of having huge

www.manaraa.com

91

number of integer variables and the other hydraulics non-linearities involved. On the

other hand, as the technique was expected to be applied to a real working system, it was

required to be a reliable and efficient solution. By reliable we mean the solution should

be able to find the closest optimal values to the global optimum and by efficient we mean

the execution time of the algorithm should be reasonable to operators, to make the system

usable for them. Main decision variables in this problem formulation include:

• the status of the pumps (which means if they are in operation or not),

• the system flow rate,

• added pressure by each pump unit in each pump station,

• power cost rates and thresholds for each station,

In order to address the specific requirements of the system, as mentioned briefly

above, Mixed-Integer Linear Programming (MILP) was selected to be used as

optimization method in this problem. The power of MILP lies in the fact that it

guarantees the convergence to the global optimum in finite number of iterations while

providing a,flexible and accurate modeling framework [146].

The optimization module includes a commercial optimization solver, and the

optimization formulation file. As mentioned before, the optimization formulation file was

designed and developed by another master student working in our research group. He

developed the formulation file by first defining a formulation framework in which the

decision variables, sets and fixed parameters were identified after gaining the required

domain expertise. This domain expertise was acquired by studying the pipeline networks

theoretical basics and through meetings with our industrial partner. Then the relationships

among the decision variables, fixed parameters and sets were identified and the

www.manaraa.com

92

constraints were taken into account in order to obtain the formulation for the entire

pipeline.

He evaluated the meetings with the industrial partner helpful in understanding the

case study system basics. Collaborating with domain experts also was beneficial for the

correctness of the formulation file and the verification of the optimization results.

The main challenge he faced was the confidentiality of the pipeline network data

and software usage which resulted in some extra works to hide that information. Also the

experts were sometimes tardy in responding back to the requests which resulted in

significant delays.

Interested reader can refer to his thesis [139] for more details on the decision

variables, objective function, optimization formulation logic and the optimization

technique used in this problem.

4.5 Pembina Pipeline

In this research project [132], we made an agreement with Pembina engineers to

just considered the portion of Pembina pipeline starting from SI station in Alberta and

ending in Kamloops in British Colombia. This portion in total includes six pump stations,

one of which is not currently in operation. Figure 17 shows the whole pipeline network

under the operation of Pembina.

www.manaraa.com

93

Cofrawtw® -Hpffres
CSSafKtsPa****®

• Pfered hpetnes
f̂ efejps bf C*tie<\

0 ~rj* 1*fTT#*‘i
Q PfcC Ckwctpprad
Q U/swf* c.orfit-'*.

hkmi gi-ow* • 0

kamqops ' o
ovum

Figure 17: Geographical spread of Pembina pipeline [137]

The length of the pipeline in this study reaches to around eight hundred

kilometres with two source nodes and two delivery points as shown in Figure 18.

Figure 18: Schematic view of Pembina pipeline

To control the flow rate and pressure of certain points, around ninety valves are

placed on the pipeline, twenty three of which are being used and monitored frequently.

The name list, type and number of the pumps in each pump station are shown in Table

18.

www.manaraa.com

94

In order to sketch the pipeline elements on Google Earth, we needed the

geographical profile of the pipeline portion under study. This was achieved from the map

of the pipeline provided by Pembina. For the sake of the confidentiality of the data

provided by the company, we do not disclose the geographical profile of the pipeline

elements in this'thesis.

Pump station Type # of pumps
SI Variable speed 2
S2 Variable speed 2
S3 Fixed speed 1
S4 Fixed speed 2
S5 Variable speed 3
S6 Fixed speed 2

Table 18: Pump stations in Pembina pipeline covered in this project

4.6 Chapter Summary

This chapter presented the information related to the major research project in our

research group on the development of software solutions for optimizing the pipeline

operation. The case study described in this thesis is a part of that major project. The goal

of this study is the development of the engineering software application to provide the

optimal operation regime for the operators as well as the possibility to visually inspect the

pipeline important variables such as total power consumption, power cost for each of the

stations and the pump speeds in variable speed pump stations.

Main domain terminology used to communicate with domain experts and to

understand the system are elaborated briefly. Elements such as valves, pumps, and pump

stations are the main components of each pipeline system which are represented in the

optimization problem formulation by certain variables. The optimization problem, which

is expected to be solved by the commercial solver embedded in the application, is also

www.manaraa.com

95

briefly described in this chapter. Our industrial partner and the pipeline network under

study were presented.

Next chapter will discuss the requirements of the case study, besides elaborating

the analysis and design of the application.

www.manaraa.com

96

Chapter Five: Requirement Specification, Analysis and Design

This chapter summarizes our engineering software requirements and provides

some of the important detailed documents used in the analysis and design of the system.

In Section 5.1 the requirements of the system are introduced. Section 5.2 briefly presents

the object-oriented design methodology employed. Actors, external systems and storage

are presented in Section 5.3. Section 5.4 presents the use-case diagram, followed by

activity diagrams in Section 5.5, architecture in Section 5.6 and class diagram in Section

5.7. The discussion of the experiences in this step of the development regarding the case

study research questions is presented in Section 5.8, which concludes this Chapter.

5.1 System requirements

In this section we briefly present the requirements of the system.

5.1.1 Functional Requirements

The optimization software is expected to provide several functionalities for the

users who are mostly pipeline operators. First, the user should be able to login to the

system. The user should be able to launch Google earth, load his/her target pipeline in

Google earth and easily navigate and browse pipeline, pump stations, valves and other

belongings of the pipeline and read the information attached to these objects as

specification boxes easily.

The user should also be able to run the optimization engine, open a new

optimization formulation file or modify the existing file. The optimized values after

running the optimization engine on the target optimization file should then create

comparison charts for each station and also for the whole pipeline in order to give the

www.manaraa.com

97

user the possibility of visually studying the results and comparing the suggested optimal

values with the available historical data of the pipeline system. By optimization engine or

optimization solver in this project we mean Lindo [147].

5.1.2 Non-functional Requirements

As we mentioned before ,the system is being developed for our industrial partner,

Pembina [137], which is an energy transportation and service provider company located

in Calgary. Obviously the system is expected to be user friendly and easily leamable. The

system is expected to be secure as it contains the operation data related to the company.

The system should support the modifications (modifiability), replacements and

extensions (extensibility) that might occur to Pembina pipeline, such as pump

replacements, power contract renewal with updated power cost rates. It also should be

easily customized (customizability) for other companies, in the way that they can load

their desired pipeline and get the corresponding visual and optimal data for that pipeline

from the system. As a result, the code should be easily maintained (maintainability).

Testability should also be considered during the system design, as we require

performing automated testing on the system to assure its correct functionality.

5.2 Object-Oriented Analysis and Design

We have adopted object oriented analysis and design methodology to benefit from

its advantages, such as improved maintainability and modifiability as mentioned in

Chapter 3. There we discussed in more details about the challenges faced in the design of

SES and object oriented methodology, which was mentioned as a potential solution to

address the design challenges as well as leading to a robust, easy to maintain system.

Compared to procedural design which is the most common practice among non-software

www.manaraa.com

98

engineers; object oriented methodology is a proper technique to manage the data and

functionalities in complex SES.

5.3 Actors, External Systems and Storage

In the following sub sections, we discuss the elements that interact with the

system. The list of these elements, which includes actor, external systems and storage

along with their descriptions are summarized in the Table 19.

Name Role Short Description

Operator Actor The user who works with the application
Optimization
Engine

External system The Lindo optimization engine (solver) which runs the
optimization file and returns the optimized values

Google Earth External system GoogleEarth application
MS Excel Microsoft Excel
Text File Storage File containing extracted target optimal values from

Lindo output file
XML file Storage File containing the pipeline specifications
Optimization
formulation file

Storage File containing the pipeline network formulation

Table 19: System list of actors and short definitions

5.3.1 Operator

As mentioned above pipeline operators are the main users of the system. They

start by logging in to the system and then browsing the network, defining/modifying

system information, viewing system logs, viewing station’s graphical views and other

provided information on Google Earth interface, run optimization engine and have the

possibility to view different optimization charts.

5.3.2 Optimization Engine

In order to optimize the pipeline operation cost, we used a commercial

optimization solver named Lindo [147] which is responsible for getting the latest pipeline

www.manaraa.com

99

network information, formulated in a file, from the system and find optimal values based

on which the pipeline operation will be optimized.

Lindo (independent from our application) provides the user with an environment,

called LINGO, which integrates an editor for the optimization problem formulation and

menu options for parameter setting and running the solver. A snapshot o f LINGO is

shown in Figure 19. In the figure, the LINGO environment, a sample model, which is in

general the formulation of the problem to be optimized, the report produced after running

the solver and the LINGO solver status are shown.

FI* E * LINGO WMOM H*>

□ j a S l B l S l I ! • H @ J m H r j w i

SE T J:
T in e : Q_T, Q_3P, Q_PG,

H _ T a y lo r_ D isc b ,
H _ « l1 lo * _ D isc f t ,
H_BeI,eod_ D ia e h ,
H_Pr in c e _ D ls c h ,
H _ f tu s tc e l ia n _ D is c b ,
H _L eeL a_D l*ch ,
H _K a»loops ;

S t a t i o n ;

ENt-SETS

DATA:

co - 850 ;
g - 9 .8 1 ;

Q_SP • 0 :
Q_PC • 0 t
C o o tc a e t • 3700 i

H _ T ay io r2 • o ;

B_8 1 1 1 o«2 - 0 ;
B ReLeod ■ 0 ;

B _ lu s t c * l t« n 2 * 0
S A u s t i a l i a o S “ 0 .

H _ T ay lo r_ 9 u c ,
H ~ « u io * _ 3 u e ;
H _lleLeod_3ue,
H P r i n c e Sue,

H _ T a y lo r l ,
H _ t f l l l o * l ,
H_KcLeod,
H _ P r ln c e l ,

8 _ A u s t r * l ia n _ 3 u c , H _ A u a t r a l l a n l ,
H _LacLe_5uc, H _ ta c L a l ,

- S o l u t i o n K i ' j r r * r I P c m h i n . i i

s v a l u e :
i b o u n d :
l l l t l e a :

s o l v e r s t e p s :
I v e r i t e r a t i o n s :

M r

o_an*
Q_BJU l~KIN
K_EUt

P Q_T1YLCR1
P~H_TAYL0R1

P_ICPT TAYLOR1
P_Q~TATL0R2
P~H~TAYLCR2

P ICPT_TATLOR2
P_TBB£SH_TATLOR

BSTATLOR
BS 1000

■ T a y lo r 2 , HJI1U©»2,
H _ P c ln c e 2 /
H _ A u s t r e l l e a 2 ,
B ~L«cLa2,

13 6 4 .8 7 3
13 6 4 .8 7 3

0 . 1676661E -11

B _ A u s t r a l la n 3 ,
9 L a c L a l,

» _ T a y lo r l ,
B _ B i l lo * l ,
B_BcLeod,
8_P r i n c e l ,
B ~ A u s t r a l i a n l ,
B L acL «2 ,

B_Taylor2,
B~H1110*2,

B _ P c in c e 2 ,
B ~ A u s t r a l l a n 2 ,

V a lu e
8 5 0 .0 0 0 0
9 .8 1 0 0 0 0
3 7 0 0 .0 0 0

0 . 18 3 0 0 0 0 E -0 1
- 1 .1 9 2 1 0 0

120.0000
200.0000
200.0000 1000.000
2 .4 7 4 0 0 0

0 .4 8 5 0 0 0 0
-3 4 1 .7 5 0 0

2 .4 7 4 0 0 0
0 .4 8 5 0 0 0 0
- 3 4 1 .7 5 0 0

4 0 0 .0 0 0 0
4 8 0 .9 7 0 0
4 7 3 .3 5 0 0

R ed u ced C o s t 0.000000 0.000000 0.000000 0.000000
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0 0.000000
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0
0 .0 0 0 0 0 0

sttf* G lo b a l O pt

Objtc** 1 3 6 4 .9 7

\ r i m t t y 1 .6 7 6 8 8 « -0 1 2

Retafart: 4506

E xttnd rtS dvaS t**

Sflfcw Type B -a n d -B

8 a « 0 * 1364 87

OBiOeund 1 3 6 4 .0 7

Tetat 3173
Nedhaar 0
M tg a t 384 :

Conafear*
Total 2983

Noofrwac 0

N a u m
Tatdt 8 549

Nerdioa. 0 ;

G trm td Moray UwdflQ

724

Ebpoad Pu iUw (Mcnutts)

0 0 :0 0 07

Up6dtlH*rvd:[2

T
Ln2Q, Cd 15 6:04 p«i

Figure 19: LINGO environment showing the optimization problem formulation,

optimal solutions and the solver status

Our application is expected to call the solver which takes the formulation file

saved in ,lg4 format (the file format for Lindo models) and optimized the target objective

www.manaraa.com

100

function using MILP (Mixed Integer Linear Programming). The resulting optimal values

are then extracted from the generated output file and saved in text files to be used later

for chart creation.

5.3.3 Google Earth

The system should be able to interact with Google Earth in order to provide the

user with the possibility of browsing different valves and stations graphically. A snapshot

of Google Earth application, demonstrating Pembina pipeline is shown in Figure 20.

i O
Fie E dt View Tools Add Help

▼ S e a r c h O V J > * ' & & < B A i ' 3 r£» f e i

Fly To I Find Businesses | Directions

Fly to e .g ., Hotels near JFK

▼ Places
L 0 ^ # My Places

S 0 Q Temporary Places
* 0 4 # Pembina_pipefc»,kml

▼ Layers EarthGatery »
5 (3 £ £ Primary D atabase A

0 P Borders and Labels
0 0 Places
0 s Photos
□ b Roads

* □£! 30Buldhgs
* 0 4 ? Ocean

Street View wi

Figure 20: Snapshot of Google Earth application

Google Earth employs a specific textual data file format, called KML (Keyhole

Markup Language) to represent different schematics and icons on its graphical interface.

KML is an XML notation for representing geographic annotation and visualization

www.manaraa.com

101

within internet-based two-dimensional maps and three-dimensional Earth browsers [148].

A small portion of a sample KML file is shown in Figure 21.

<?xml version=" 1.0" encoding="UTF-8"?>
<kml xmlns-’http://earth.google.eom/kml/2.2">
<Document>
<Placemark>

<name>Pembina Pipeline</name>
<Style>

<LineStyle>
<color>7f00fif00</color>
<width> 10</width>

</LineStyle>
</Style>
<LineString>

<extrude> 1 </extrude>
<tessellate> 1 </tessellate>
<coordinates>
-120.658,56.155,409.9
-120.648,56.145,473.35
-120.648,56.125,443.17
-121.65,55.708,757.73
-121.66,55.687,625.75
-122.203,55.645,641.7
-122.95,55.125,737.92
-122.97,55.125,709.26__________________________

Figure 21: Sample KML file showing header information followed by “placemark”

tag and sample coordinates used to demonstrate different stations on GoogleEarth

The information related to the geographical locations of each pipeline element,

i.e. pump station, pump segments and control values are saved in these files and each

time the Google Earth starts up, the information automatically loads on its graphical

interface and the user can browse the pipeline. This gives the user a real flavour of where

the pipeline is located on the map and the user also can view the internal information

related to each pump station, such as the number of pumps and their types, as shown in

Figure 22.

http://earth.google.eom/kml/2.2

www.manaraa.com

Pum p ty p a Pum p Mm M No. o f a t* |M Soria! No

Pwmpl VvUMa** * r-----1

tvmpl VarfaMe ______ } 3 ♦------.}

Direction*: To here - From here

C ioo^k

Figure 22: S3 station internal information

5.3.4 Text files

The optimization solver produces large amount of information after solving the

optimization problem. Only a small portion of this information is required to be extracted

for further calculations or the creation of charts. The Lindo environment provides the user

with the possibility to redirect their data of interest (among optimal values) into text files;

therefore text files are where we store our target optimal values. After each optimization

run, the content of the text files are replaced with the new optimal values.

In order to be consistent with our optimization data, the historical data taken from

our industrial partner is saved in text files. It is worth mentioning that we received huge

amount of historical data saved in Excel files from Pembina, where we were required to

identify and extract our data of interest. In some cases further data manipulations, such as

unit conversion or parameter calculations were also required to convert their data into a

www.manaraa.com

103

proper usable format for our application. This historical data was gathered using Pembina

supervisory control and data acquisition (SCADA) system. SCADA systems are used to

control and monitor industrial, infrastructure, or facility-based processes.

5.3.5 XML File

XML files are typically used to transport and store data. Here in this problem,

XML files are used to store the specifications related to the pipeline system, which

mainly includes the name and number of pump stations, the number of pump units in

each pump station, the path of the Lindo formulation file for the pipeline operation

optimization and the path for the KML file containing the geographical profiles of the

pipeline.

In order to load a new pipeline and get the system parameters related to each

pipeline renewed, the pipeline specification which is stored in a certain XML file is

required to be loaded to the system. Thus in order to make the load scenario possible, the

user of the system has to first generate the corresponding XML file. A sample XML file

used in loading a new pipeline in the system is shown in Figure 23.

5.3.6 M S Excel

Ms Excel is used in order to create the charts in this application. The optimization

data as well as data taken from SCADA system which are all saved in text files are

required to be visualized for comparison and decision making purposes. This is done

using the charting feature of Ms Excel because of the high flexibility, support and ease of

use that can be achieved by using Excel charts. The idea of using Excel charts becomes

stronger when one knows that the chart page in Excel sheets can be simply exported to

image files. These image files also can be easily shown in application user interface.

www.manaraa.com

104

<?XML version-' 1.0" encodmg="utf-8”?>
<pipeline pump_stations="5">

<pump_station id="Sl"
pump_no="2"
pump_type="variable"
a="-0.0124"
b="0.4903"
c="806.5363"
const="0.8713"
nominal_speed="2900">

</pump_station>
<pump_station id="S2"

pump_no="2"
pump_type="variable"
a="-0.0022"
b="0.4345"
c="926.9063"
const="5.1234"
nominal_speed="5400">

</pump_station>
<pump_station id="S3"

pump_no="2"
pump_type="fixed">

</pump_station>
<pump_station id="S4"

pump_no="3"
pump_type="fixed">

</pump_station>
<kml path="\\Pembin_Pipeline.kml"

path_type="relational">
</kml>
optimization formulation_path="c:\\pembina3.1g4"

path_type="absolute">
</optimization>

</pipeline>___
Figure 23: Sample XML file used for loading a new pipeline

We used Microsoft Component Object Model (COM) technology to interact with

Ms Excel from .NET framework. COM is a technology offered for Microsoft Windows-

family of operating systems that enables software components to communicate with each

other [149]. COM is integrated in several applications such as Microsoft Office Family of

products. The .NET Framework provides interoperability with COM, which enables

www.manaraa.com

105

COM-based applications to use .NET components and .NET applications to use COM

components. Employing this technology, we communicated with Ms Excel from our

application in .NET framework, to create a chart object using the target optimal and

SCADA values imported that chart object to a bitmap image file and then showed the

image of the chart in our application.

5.3.7 Optimization formulation file

As explained in Chapter 4, the pipeline operational characteristics and constraints

are formulated in a script where the solver can finds the mathematical formulation of all

the required elements of the optimization problem, such as decision variables and

objective function and find the optimal values considering the configured constraints and

parameters. The optimization formulation scrip used in this project is shown partially in

Figure 24.

0FOR(Station(s) | s #EQ# 1:
H S', 2

6BIN(B Sll (t)) ;
@BIN(B S12(t)) ;
@BIN(Te SI(t)) ;
H_Sl_Suc(t) = 1238000/ro/g ;
H SI Disch(t) = H SI Sue (t) + H Sll(t) + H_S12(t) r

P Sll(t) = P Q Sll * (Q T (t) - Q Sll(t)) + P_H_S11 * H._Sll(t) +
P_Icpt_sl! * B Sll(t) ;
P S12(t) = P Q S12 * (Q T (t) - Q S12 (t)) + P_H_S12 * H._S 12 (t) +
P_Xcpt S12 * B S12(t) ;
H_S11 (t) < B_Sll(t) * H_Max ;
H Sll (t) > B_S11(t) * H_min ;
H S12(t) < B_S12(t) * H_Max ;
H S12(t) > B S12(t) * H min ;
Q Sll(t) > (1-B Sll (t)) * Q min ;
Q Sll(t) < (1-B_S11(t)) * Q_Max ;
Q S12(t) > (1-B S12 (t)) * Q min ;
Q S12(t) < (1~B_S12(t)) * Q Max ;
C_S11(t) = P _L Sl(t) * Rate L SI (t) + P H Sl(t) * Rate__H_Sl(t) ;
P L SI(t) + P H SI (t) = P Sll(t) + P S12 (t) ;
P_L SI(t) < P_Thresh SI * Te SI (t) ;
P_H SI(t) > P_Thresh_Sl * (1-Te SI(t)) ;
P H SI(t) <= 100000 * (1-Te Sl(t)) ;

Figure 24: Sample part of the optimization formulation file [139]

www.manaraa.com

106

5.4 Use-Case Diagram

In previous section, we presented all the actors and systems interacting with our

system and described their key roles in the application. In order to represent the system

requirements, the main functionality of the system, system actors and their relations are

sketched in the use-case diagram. The use case diagram of the system is shown in Figure

25.

PumpOptimisatlonSystem Google
Earth

Control GoogleEarth
Load pipeline

XML
File

Browse Pipeline

MS
Excel

Operatoi

View Charts CreateCharts

Text
File

Run Optimization

Figure 25: System use-case diagram

www.manaraa.com

107

5.4.1 Use case Specifications

In this section we discuss three of the important use-case specifications of the

system.

5.4.1.1 Load pipeline

Brief description

Operator selects and opens a new XML file which contains the specifications for the new

pipeline and the system extracts the required information from XML file in order to

renew internal parameters related to pipelines and also the path for KML file which

includes the geographical profile of the new pipeline.

Basic Flow o f events

1- The operator clicks on the “Load new pipeline” submenu from “File” menu.

2- The system displays the “open dialogue box” for browsing and selecting the XML

file related to new pipeline.

3- The operator selects the specific XML file and click on the “open” button.

4- The system reads the required information from the XML file and renews the

system internal parameters and loads the pipeline schematic on Google Earth

interface accordingly.

Alternative flows

- Invalid XML file

If in step 3, the user selects a wrong file, either not having a standard XML format or not

having all the required information for the system to reload the pipeline related

parameters or not having a valid path to read a KML file, the use case ends with a failure

condition and the system shows the proper error message.

www.manaraa.com

-Invalid KML file

If the Google earth does not find the KML file having a standard format, it is not possible

for Google Earth to load the pipeline on its graphical interface. The Interface will remain

blank and the system shows a proper error message.

Preconditions

- The user must be in the application main form (all the modal windows must be close.).

- Google earth is installed on the computer running the application.

Post conditions

- Successful Completion

The user can start browsing the new pipeline.

- Failure Condition

The Google Earth will remain blank. The user can either select and load a new pipeline or

choose to close the Google Earth application and use other features of the system.

Extension points

In step 4, while loading the KML file on Google Earth, the “manage Google Earth” use-

case will be referenced and used in order to load a new instance of Google Earth. This is

required to clear up any previously loaded pipeline on the Google Earth graphical

interface.

5.4.1.2 View charts

Brief description

Operator chooses to view the optimization charts.

Basic Flow o f events

1- Operator chooses the “view chart” submenu from “Tool” menu,

www.manaraa.com

109

2- Operator chooses the station name in the “chart” modal window,

3- Operator also chooses the chart type (either operation cost or pumps speed),

4- The system reads the related SCADA and optimization data from

corresponding files,

5- The system passes the data to Ms Excel,

6- The system asks Ms Excel to generate the Excel charts,

7- MS Excel converts the chart to a bitmap image and returns the image path to

the system,

8- The system shows the resulting chart image.

Alternative flows

1-Ms Excel is busy with another application

Ms excel does not respond, therefore the system can not pass the target SCADA and

optimal values to Excel and the charts can not generated. A proper error message is

shown by the system.

Preconditions

- Ms Excel is installed on the computer running the system.

- Files containing SCADA and optimal values should exist in the target directory.

Post conditions

Successful Completion

The user can start viewing different chart types sketched with the SCADA and optimal

values taken from different stations.

Failure Condition

The user can view the last successfully built charts (if any).

www.manaraa.com

110

Extension points

“Create chart” use-case will be referenced and used in order to handle the interactions

between the system and Ms Excel

5.4.1.3 Run optimization

Brief description

The operator calls Lindo to solve the pipeline formulation file.

Basic Flow o f events

1-The operator clicks on the “Run optimization” submenu from “tool” menu.

2- The system displays the modal window for selecting the target optimization file

and running the solver.

3- The operator selects the target optimization file.

4- The system loads the file.

5- The user can modify the optimization file and then click the save button.

6- The system saves the optimization file.

7- The user click on “Run optimization” button.

8- The system calls the solver and gives the target optimization file to the solver

to be optimized. The optimal values (if feasible) are found and saved in text files.

Alternative flows

- Optimization solver is busy with other applications

The system creates a time out error message.

- The formulation file is invalid

A proper error message is generated and shown to the user.

- The optimization problem is not feasible with current variable setting

www.manaraa.com

I l l

The system waits for a certain amount of time (currently set to 10 seconds based

on the experience) and then checks the output status file and if finds the infeasible status

on that, creates and shows a proper message.

Preconditions

Lindo is installed and registered on the computer running the system.

Post conditions

Successful Completion

The files containing optimal values for each station are updated with the new optimal

values.

Failure Condition

The files containing optimal values for each station are not updated. The user can change

the optimization file variable setting and try to run the optimization solver on the new file

again.

Extension points

The “Manage optimization” use-case will be referenced and used to manage the

interactions between the system and the optimization solver.

5.5 Activity Diagrams

In order to represent the stepwise actions and workflow of the components of the

system, we have used activity diagrams. In this section we present three of the main

activity diagrams of the system use-cases.

5.5.1 Run Optimization

Based on the information presented in the use-case specification of “calling the

optimization solver”, the activity diagram for this use case is shown in Figure 26.

www.manaraa.com

112

User selects "Optimisation" submenu

[load new file]
User selects new optimisation file

[use current file] does not need edit]

[need edit]

User edits optimisation fileJ V

[does not need edit]

System calls optimisation solver

The solver finds optimal values, updates files

Figure 26: Activity diagram for “Run optimization” use-case

As seen in the figure, different steps and conditions of the use case are graphically

represented.

www.manaraa.com

113

5.5.2 View Charts

The activity diagram for viewing the charts is shown in Figure 27.

User opens "View charts* Window

User selects station

User selects Chart type

System reads optimal and scada data

System shows chart
Systems passes data to MS Excel

MS Excel sketches chart

MS Excel converts chart to image, returns image path to system

Figure 27: Activity diagram for “View chart” use-case

5.5.3 Load Pipeline

The activity diagram for loading a new pipeline is shown in Figure 28.

www.manaraa.com

114

user selects "Load new pipeline" submenu

User selects Xml file

System loads Xml file

System renews corresponding information

System loads Google Earth with new pipeline

Figure 28: Activity diagram for “Load pipeline” use-case

5.6 Architecture: MVC

In order for supporting testability, maintainability and separation of logics and

concerns, the MVC pattern was introduced back in 1979 and first implemented in

Smalltalk-80 [150],

www.manaraa.com

115

Design for testability has not gained any attention in scientific software

development according to the primary studies we had in our systematic review. We could

not find any publication in which the testability had been a concern of the SES designers.

Therefore to bring testability into our attention, while we were considering the issues of

design, we have adopted Model-View-Controller (MVC) architectural pattern in our

system in order to better manage different levels of the system.

Class type Class name Description
Controller mainController The controller which manages the main functionality of

the system, such as creating chart, loading a new
pipeline and populating the corresponding network
with the data taken from optimization and SCADA text
files

GEController The controller which manages the system’s interactions
with Google Earth, such as moving in different
directions and zooming in and out

optimizationController The controller which manages the system’s interactions
with optimization engine, such as running the
optimization solver and opening the optimization editor

View mainForm The main window of the application which contains
GoogleEarth and menus

chartForm The window for creating and reviewing different charts
optimizationForm The window for editing the optimization formulation

file parameters
Model
(Entity)

Network Class representing a pipeline entity
pumpStation Class representing oil pump station entity
Pump Class representing pump entity
GE Class used to represent a Google Earth instance
Lindo Class used to represent a Lindo (optimization solver)

instance
ExcelApp Class used to represent an “Excel application” object

used to create a chart

Table 20: System classes categorization based on MVC architecture

In MVC architecture the system is broken down into three components: model,

view and controller. The model component is the application’s business layer and usually

www.manaraa.com

116

includes the objects that represent the business entities which make up the application

such as pump units and power stations.

The view layer is the application’s user interface and consists of different modal

and modeless windows and other standard GUI elements such as menu, buttons, images,

radio buttons and panels. The choice of having an isolated layer for all the interactions

with the user will later help us in the testing graphical user interface of the system.

The controller layer is where all the events, generated by user-interface actions,

such as when the user clicking a button or selecting an item from a drop-down list are

processed by the application. Different elements of the system are shown in Table 20.

5.7 Class Diagram

Class diagram is one of the static structure diagrams that demonstrate the structure

of the system using the classes of the system, their attributes, their methods and the

relationships between the classes [151]. The simplified class diagram of the system is

shown in Figure 29. In this figure classes are color coded for better separation of different

layers of MVC. Forms are coloured in yellow, controllers in grey and entities are

represented in green. Setters and getters (accessor of network, pump and pumpStation

are not shown for the sake of simplicity.

www.manaraa.com

117

-P ath : tiring
■tetri

«<rfaw» ChartForm

tgotComboO
tooMatwoifcO

»MlCWO
»chanQFtcS4aeO
»tdtfToCo«nbo()
*tad~ormTitlaO
i fofnhnfWii l StlieMlndixChinQKiO
4Tadk>(kitton2_ChacfcadChangad()
+rsdloButton1_CI>e«liadChangadO
H cM .lo idO
tfChartJteateoO
HChart.doMQ

«vi*w»» PumpOptbnizadonSyttafnMainForai

^geisaswisar
K3EWtndow_Forn<Cto«ingO
»OEWIndow_Raste«0• ■ | , «« »«>\KVV>iaOwJHOUNVVniM\|
KJEWtndow_aXKO
HXWMow (osdPfpcUficQ KSCWMowIcIomOCO
*GEWIndow ruoOpflmM ulonQ
»OBMndow"vtawOpliinl« dlnnChartsQ
*OEWindow_MMParanMlHiO

♦Op*oF«*0
rEdHFHaO
♦SavaFilafl
♦Oo—Q

nracnlfolir** OCComreiltr

iM W wlwPu»Q

« tn U ly » pump
Id : tiring
Typt: tiring
■Cod

A: double
•Brdoublo
-Crdoublo
•Coratanl: double

■Flow

« an tity » pumpStation « o n (ity » Notworfc
-nama tiring
■MdCod: doublo
■totalScadaCoat: doubt*

■Nam*: string
■pupipmnont

«ar»Mty» EacatApp « sn tlty »G E «antlly*» Undo

I

Figure 29: Application class diagram

www.manaraa.com

118

5.8 Discussion

In this Chapter, the requirements of the system besides its analysis and design

were described. In response to H l.l (first hypothesis of the case study first research

question: Gaining domain expertise is time-consuming and difficult for software

engineer, compared to learning the basics of typical non-scientific/non-engineering

domains), besides the findings of the SLR presented in Chapter 3, we also observed that

understanding the problem domain and application requirements is one of the main

challenges in SES development [33]. Principles and practices entangled with scientific

and engineering domains are usually complex and hard to understand for software

engineers, not having any related experience and background. Our experience in the

requirement elicitation of the application confirms that gaining the domain expertise is

tedious and time consuming for us as software engineers, because of the certain

complexities of the pipeline operation.

Regarding HI.2 (second hypothesis of the case study first research question: The

requirements cannot be decided in early stages of the development as they evolve

throughout the process), our experience matches with that of the literature; we observed

that the requirement specifications can not be finalized in early stages of the

development, and this is an ongoing process in the real world as software engineers and

domain experts need to learn how to communicate. Another observation we had was that

most of the time domain experts did not have a clear understanding of how the software

could be integrated with their every day routines and they did not know how it could be

utilized in an efficient way beside their own system.

www.manaraa.com

119

To tackle this issue and in response to H2.1 (first hypothesis of the case study second

research question: Regular meetings with domain experts is a very beneficial practice for

validation of the requirements), as suggested in the literature [63], in our case study,

meetings were organized with the industrial correspondent to frequently verify our

understanding of the pipeline operation principles, documenting the domain concepts and

basics as required and verifying the system requirements.

Object-oriented methodology is not very common in SES community, as the

scientists and engineers do not have the required background to benefit from this

methodology [34]. In our case study in response to H2.3 (third hypothesis of the case

study second research question: Adopting OO methodology, can pave the way for using

design and architectural patterns besides giving a better management over data and

functions), object-oriented technology was adopted in designing the system to build a

robust framework, as suggested in [127], and to better manage and modify different

modules of the application.

Employing design and architectural patterns have shown to provide remarkable

advantages for reusability and maintainability of SES [116]. We used MVC architectural

pattern to bring testability and maintainability to our system, in order to address these

non-functional requirements of the target software. According to the results of SLR,

testability in particular is a factor which is often ignored in SES design. As testing SES is

considered complex and tedious according to literature, we tried to incorporating

testability in system design.

www.manaraa.com

120

5.9 Chapter Summary

This chapter summarises our oil pipeline operation application requirements as

well as providing analysis and design documents used in designing the system. We

adopted object-oriented methodology in this study. System actors, use-case diagram and

some important activity diagrams such as “calling the optimization solver”, “viewing

charts” and “loading a new pipeline” are presented.

We followed MVC architectural pattern in order to support testability besides

better managing levels of our application. Different elements of the system based on

MVC architecture, which include the system entities such as pump stations, controllers

such as optimization controller and the Google Earth controller and application views,

which are different windows of the system are tabulated and described.

The process of application development will be discussed in next Chapter, and the

dependency analysis of the system artefacts will be discussed.

www.manaraa.com

121

Chapter Six: Development

In this chapter, we present the details on the implementation and development

phase of the pipeline operation application. For our development platform, we used

Visual studio 2008. C# programming language was chosen for implementation, mostly

because we were proficient in it and our industrial partner preferred it to avoid further

inter-operability issues with their other applications.

We start by elaborating our development process in Section 6.1, which was the

iterative development approach, followed by dependency analysis in Section 6.2, to gain

better understanding about the characteristics and dependencies of the code. This type of

analysis and visualization brings the developer a better understanding of the code and

makes the code maintenance easier and more cost-effective. Section 6.3 provides the

lessons learned and concludes this Chapter.

6.1 Development Process: Iterative Approach

According to the certain characteristics of SES, as mentioned in Chapter 3, we

decided to take an iterative development approach in our oil pipeline application

development. This model is depicted in Figure 30. The process starts with initial

planning for the development, followed by preliminary understanding of the system’s

requirements, analysis and design, feature implementation, deployment, testing and

primary evaluation. Next iterations complement the activities of previous iterations by

adding new features and functionalities, may raise the need for redesign and refactoring.

This gives the developer the opportunity to benefit from what they learned in previous

iterations for improving the development quality.

www.manaraa.com

122

R equirem ents^ Analysis and Design

Implementation

Initial planning

Planning

A J Deployment

> -----------Evaluation Testing

Figure 30: A model of Iterative development approach [152]

According to the results of our SLR, this approach works well with the nature of

SES, as it gives flexibility to the requirement elicitation and provides the opportunity of

getting iterative feedback from our industrial partner to evaluate the understanding of the

problem, on a regular basis. This evaluation is considered very critical to the

development to avoid misunderstanding of the concepts, as they are not primarily expert

in the pure science they develop the software for.

In this study, as mentioned in Chapter 3, we started by discussing with our

industrial partner to identify the requirements of the system they needed. We faced

challenges in understanding their language, which were settled after discussing the details

over several meetings and learning their specific domain terminologies.

The analysis and design then took place with the appropriate choice of object-

oriented methodology, followed by partial feature implementation and testing of the

system. The system then was evaluated based on our industrial partner’s expectations of

necessary functionalities as stated in the requirements section, besides our own

www.manaraa.com

123

understanding of what might be helpful for them after having several meeting with the

domain experts and investigating similar pipeline operation software. Features were

prioritized roughly based on their importance with principle investigator (advisor of this

thesis) in the beginning of the project and new features were gradually added in the

following iterations. Sometimes it was required to break a complicated feature into

several smaller tasks and then develop each of those smaller tasks during one iteration.

This way the development of such a feature took several iterations before it can be fully

integrated into the system. Manual evaluation and automated testing based on the proper

functionality of the system were held regularly between the author and the principle

investigator in their weekly meetings.

6.2 Dependency Analysis

In this section we briefly present some ideas which help reuse and maintenance of

the application. According to the results of our SLR, the maintenance stage of SES

development has not yet gained enough attention and reusability of the software is often

ignored. The ideas discussed in this section suggest improving the maintenance quality.

In order to understand a piece of code and judge about its quality for re-use

purposes, it is required to study what it depends on and also what depends on it [153]. If

the component under study is found to have a large group of dependencies on other

systems or components, then it will potentially change whenever one of those other

systems or components change. Dependency analysis is performed to identify and

understand the existing dependencies between code in order for managing the

complexities that may arise as the result of changes and updates on the code.

www.manaraa.com

124

To analyse the code dependencies within a system, all the existing relationships

along with the source and the target of those relationships should be identified [153].

These relationships are also possible to be dependent on other systems or components,

therefore all the indirect dependencies are required to be identified and traced within the

system. There is a graph formalism called the dependency graph, which includes all the

existing relations among the code. In the following section, we demonstrate the

dependency graph for our application and briefly introduce the tool used to perform the

dependency analysis in our study.

6.2.1 Applications Metrics

We used Ndepend [154] to calculate some of the application metrics, as discussed

in this section. Ndepend is a popular tool that can be integrated with Visual Studio and

provide dependency analysis utility as well as metrics calculation.

After creating a project in Ndepend by selecting the target assembly to be

analyzed, the user can run the analysis and then study the reported results. Ndepend

investigates the code and create several reports on the application statistics and metrics.

One of the application’s metrics reported by Ndepend is the number of

Intermediate Language (IL) instructions. When the C# code written in .NET Framework

is compiled, the compiler generates assemblies which contain byte-code. In the .NET

framework, an assembly is a group of types and resources that builds a logical unit of

functionality and is usually used for deployment, versioning, and security purposes.

Assemblies are stored as .exe or .dll files [155]. These assemblies can then be executed

by Common Language Runtime (CLR) which is the engine for code execution in .NET

Framework. The byte code is called IL. The number of IL instructions in a system is

www.manaraa.com

125

considered a size measure, which can be determined just after the source code is

compiled.

Global Summary

Project Name: New ftnject4
Project Fie: C:\Documerfc and SeinaslrferhoodtMv DocumentsLDovunloadsIN Depend Project Jittoroj
Analysis Date: Hon 07 Mar 14:15 most recent

AppHcation New Project4

IL instructions : 4711
fines of code (LOC) : 761
fines of comment : 222
Percentage Comment : 23%
Assemblies : 1
Namespaces : 4
Types : 13
Methods : 131
Fields : 75

Coverage:
Percentage Coverage : N/A because no coverage data specified
Lines of Code Covered : N/A because no coverage data specified
W Lines of Code Not Covered : N/A because no coverage data specified

Third party code used by the applicafion:
Third party Assemblies used : 7
Namespaces used : 19
Types used : 143
Methods used : 136
W Fields used : 14

Figure 31: Snapshot taken from NDepened analysis report

Number of lines of code, as reported by Ndepend is different from physical LOC

(which is calculated by counting application’s lines of source code). This metric which is

referred to as Logical LOC, is calculated in Ndepend by the information taken from PDB

files. A PDB or Program DataBase file contains information related to the debugging of

the application and the project state [154]. The logical LOC for a method iis then

calculated by counting the number o f sequence points for that method in the PDB file.

www.manaraa.com

126

Sequence points are used to highlight a spot in the IL code that corresponds to a certain

location (usually a part of a statement) in the original code.

As it is demonstrated in Figure 31, IL instructions, logical LOC, lines of

comment, number of used assemblies, namespaces, types, methods and fields are

calculated and shown. Also there is some information on third party code used by the

application, as shown in the snapshot, which refers to the code referenced by our

application’s assembly and source code. Brief description about this third party code can

be found in Table 22.

Cyclomatic
ComplexityType Name * # Lines Of 0

Code
#IL 0

Instructions

fChart 176 1169 30
GEController 31 216 9

GEWindow 123 775 22

ImainController - • -

mainController 362 2165 58

network 5 28 4

optimizerController 13 76 5

Program 3 10 1

pump 9 50 7

pumpStation 9 52 8

Resources 7 40 5

Settings 2 14 2

varaileSpeedPum p 21 116 16

Figure 32: Application classes’ main metrics breakdown

In Figure 32, the breakdown of the main metrics of our application is tabulated.

Cyclomatic complexity metric values are also calculated and shown for the application

classes. This complexity metric shows the number of linearly independent paths through

www.manaraa.com

127

the program source code [156], which can be calculated using the control flow graphs.

MainController class, fChart (which is the class for the view chart window) and

GEWindow (which is the class for the main window of the system) have higher

cyclomatic complexity values compared to other classes o f the system, as the main

fimctionality of the application are embedded in them. This distribution of complexity is

enforced to different classes of the system as the result of using the MVC architecture.

6.2.2 Dependency Graphs

We used Ndepend [154] to perform the dependency analysis. As explained earlier

in this chapter, dependency graph demonstrates all the existing dependencies among

system’s elements. The dependency can be identified in different levels, such as

namespace level, class level and method level.

('N'1 GEWindow.controllers 1
t- - - - - - - - - - - - - - - - - - -

GEWindow (GEWindow.mod«r

r \ GEWinctow.Proptftto

Figure 33: Dependency graph, system namespace level

For example Figure 33, demonstrates the dependencies between the application’s

namespaces. In .NET framework, namespaces are used to group the type names in order

to reduce the chance of name collisions [155]. The thickness of the edges connecting

different boxes in the dependency graph is proportional to the degree of coupling

between those entities. Here this means that the edge thickness connecting the two

namespaces is proportional to the number of classes of the source namespace which are

www.manaraa.com

128

using the classes of the target namespace added to the number of classes of the target

namespace used by the source namespace. As seen in the figure, there exists a noticeable

strong dependency between the application and the controllers compared to the

dependency between controllers and model or the dependency between application and

model, as the controllers are in charge of controlling the interactions between models and

views as well as handling and implementing the business logic in the system.

Looking from architectural level, this is the implication of using MVC

architectural pattern, as according to the MVC architecture, the main functionality

(business logic) of the system is integrated in the controllers and the user achieves this

functionality by interacting with the system through the provided views (forms). Figure

34, presents the dependencies among the mainController class methods. Brief description

of these methods is presented in Table 21. The demonstrated relationships show the

methods that are beifig called from within the other methods. For example showCharts()

method, calls creatOptChartQ, loadCombo() and createStChart(). This gives the reader a

clear understanding of the source code implementation within mainController. The

dependency graphs for other controllers of the application are presented in Appendix B.

www.manaraa.com

129

Method Name Description
getOptimizationPath Returns the optimization formulation file path.
setOptimisztionPath Extracts the optimization formulation file path from the

corresponding XML file whenever a new pipeline is loaded to the
system

getXMLPath The getter method for the XML path member variable
setXMLPath The setter method for the XML path member variable
getlmageC The getter method for the image index created by the MS Excel

charting utility
setlmageC The setter method for the image index created by the MS Excel

charting utility
getOptCost Returns the total cost of the optimized operation
getKMLPath Extracts the KML file path from the corresponding XML file

whenever a new pipeline is loaded to the system
getSteamReader Returns a stream reader by which the corresponding text file can be

accessed
getToLine Reads the specified text file lines up to the specified line
readNetworkData Populates the network object with the corresponding data taken

from the text files whenever a new pipeline is loaded to the system
loadCombo Dynamically re-loads the combo box content (on the view chart

window) according to the options chosen by the user
showCharts Shows the charts according to the options set by the user in the

view chart window
createOptChart Generates the MSExcel charts demonstrating the optimal and

SCADA pipeline operation cost daily values
speedRoots Calculates the roots of a quadratic equation designated for

calculating the speed of a variable speed pump based on a group of
constants corresponding the each pump, the amount of head
generated by the pump and the current flow rate passing through the
pump

createSpeedChart Generates the charts demonstrating the hourly speed of each of the
variable speed pumps

createStChart Generates the charts demonstrating the hourly cost required to
operate each of the pumps

releaseObject Releases the objects created while using the charting utility in MS
Excel

Table 21: mainController class methods

www.manaraa.com

130

: mainControfef
4towCharts(Strmg
.network)

’ rjrCatOteJllliaiC
w

âsCo*otor

m n C o M t i :

irainControllef.ctor()

maoControlef
.MtOpftl
(String)

mainController
,createOptChart(lnt32
.network)

iiuinContiDlKlDidCoMtM
(IChirtNtMrfc)

mainController
.createStChart(String

mainController
.readNetworkData(network)

f nK<Cerhte.|MnpC

fnanConlrofcr̂ MToUM
(MnMRMtokffii

t .
nainControfer
.ptStunRNdirfStrinf)

tnainContofcr
id«ttiObjict(ObjKt)

mainController
,createSpeedChart(String

mainController
.getkmlPath(String)

/ -v
I mwConW#

«a»C<mfcr

Figure 34: Dependency graph, within mainController

www.manaraa.com

131

In the dependency graph shown in Figure 35, the dependencies between our

application’s assembly (the box labeled GEWindow) and other used assemblies or

namespaces are presented. According to the figure our system is highly coupled with

System.Winows.Forms namespace. This is mainly because GEWindow is a Windows-

based application and System.Winows.Forms namespace contains classes which provide

user interface features for Windows-based applications.

System.Drawing

Ciy$tem.Xrah

System.Windows.Forms

f GEWindow^ fMicrosoft Office.lnterop^
.Excsl

mscorlib

Cnterop.EARTHLib^

/ N
System

Figure 35: Dependency graph between .Net assemblies

www.manaraa.com

132

The dependency between GEWindow and mscorlib is also noticeable as this

assembly contains base class libraries of .NET framework. A brief description of the

assemblies used in our system is presented in Table 22.

More details on the applications statistics and other analysis results performed

using Ndepened, are presented in Appendix B.

Assembly name Description
System.Drawing This namespace provides access to GDI+ basic graphics

functionality [157]. (Windows GDI+ is a class-based API
intended to be used by C/C++ programmers which enables
applications to use formatted text and graphics on both the
video display and the printer [158]).

System.XML The namespace offers standards-based support for
processing XML, such as XML 1.0 and XSD Schemas
[157],

System.Winows.Forms This namespace contains classes for building Windows-
based applications that take full advantage of the rich user
interface features available in the Microsoft Windows
operating system [157].

Microsoft.Office.Interop.Excel This assembly, which belongs to the family of Component
Object Model (COM) Interop assemblies, allows
unmanaged (COM) code to be called from managed
(.NET) code by using the Microsoft .NET Framework and
the common language runtime (CLR) [159].

mscorlib The mscorlib.dll is a shared assembly, which includes the
important base class libraries of .Net framework.
Applications written for the .NET framework are executed
in the software mscorlib.dll to manage the program's
runtime requirements [1601.

Interop.EARTHLib Another assembly from COM family to manage the
application’s interaction with Google Earth.

System This assembly is a reusable and self-describing building
block of common language runtime applications [158j.

Table 22: Description of the external assemblies and namespaces used in our

application

www.manaraa.com

133

6.3 Discussion .

According to the emerging nature of the requirements in SES [79], they can not

be fixed in the beginning of the development. This can be later the source of further

challenges in the development [33]. In order to provide evidence in response to our case

study first research question, our experience in the implementation and development of

the system confirms that requirement have an emerging nature throughout the

development; thus, we chose to adopt the iterative development approach, as suggested in

[90], also in response to H2.2 (second hypothesis of case study second question:

Adopting iterative approach fits the “evolving and emerging requirement” nature of

engineering software). Defining iterations for the development introduces the flexibility

of bringing in the newly defined requirements at later iterations to the software system. In

iterative approach in each iteration, the most important requirements are taken into

account and integrated into the system.

Maintenance difficulties and the need for long-term maintenance are mentioned to

be challenging in SES development according to the literature. We performed

dependency analysis in order to extract the dependencies among different system

artefacts. Regarding the case study second research question, this was conducted to help

further maintenance of the system artefacts. Having dependencies demonstrated as the

result of dependency analysis, the elements which are dependent on the changing

elements or the elements which are being referenced by the changing elements can be

easily identified for any potential need for update or change.

www.manaraa.com

134

6.4 Chapter Summary

In this chapter, the iterative development process used to develop the system

under study was introduced. Dependency analysis, in order to extract the dependencies

among the system artefacts, was performed. This analysis identifies the highly dependent

elements, whish later gives the developer a precise idea about the element relationships,

and is helpful when any artefact of the application is required to be re-used, upgraded or

replaced. Some of the application metrics such as lines o f code, IL instructions and

cyclomatic complexity was calculated and reported followed by selected dependency

graphs.

Next Chapter will discuss the testing approach used to test the functionality of the

system as well as testing the GUI.

www.manaraa.com

135

Chapter Seven: Testing

The quality of the software systems need to be systematically checked to assure

those systems meet the requirements and specifications. Testing SES in specific, as

mentioned in Chapter 3, is a twofold challenge; testing the scientific/engineering solution

offered to address a scientific or engineering problem besides testing the software which

is designed to utilize that solution in a proper and easy way. To be more specific in the

context of software engineering, by testing we mean investigating if a program is

behaving as expected [161]. Here, we aim at automated testing compared to manual

testing, in which a program or application is written to exercise and verify (assert)

Software Under Test (SUT). To be more specific, here we automatically run manually

written tests.

In this chapter we discuss the automated testing strategies we undertook, in order

to test the software functionalities. To achieve this goal, we planned to perform

automated unit testing and automated GUI testing of the system as two of the most

common and standard testing techniques used in software projects to detect bugs. As

mentioned in Chapter 6, we adopted the iterative development approach in which testing

is a part of each iteration. Therefore, in each iteration, the implemented features were

tested in addition to testing the previous code to make sure nothing was unintentionally

broken by adding the new features.

As mentioned in Chapter 5 on the analysis and the design of the system, we used

MVC architectural design pattern in order to classify and separate the concepts in the

system in order to make the testing process more straight and manageable. In MVC

www.manaraa.com

136

architecture, the business logic is separated from view and presentation logic, which

makes testing of the functionality independent from testing the view layer [158, 162]. As

shown in

Table 20, the system consists of 3 controllers, each of which is responsible for a

group of similar functionalities provided by the software. For example all the methods

and variables required for implementing the interactions and functionalities related to

Google Earth in the system and working with that are placed in GEController. This

separation and classification of functionalities and concepts, as will be discussed in the

next sections, assisted us in figuring out which classes contain the code that is more likely

to change or break during the development of the new features and which classes does

not require being included in the testing cycles, mostly because they are using adequately

tested libraries.

For the verification of the accuracy of the optimization model, sensitivity analysis

on some of the important pipeline operation parameters is conducted by another student

in our group, who has formulated the optimization problem at first place. The interested

reader can refer to [139] for further details on the verification of the optimization

problem.

In this chapter, first we describe the details of the unit testing practice we

undertook, presented in Section 7.1, followed by the GUI testing method and scripts we

designed to test the correctness of the functionality of the GUI, presented in Section 7.2.

In Section 7.3, we presented the mutation testing performed on the optimization

formulation script to further test the correctness of that script. Finally in Section 7.4, we

discussed the lessons learned.

www.manaraa.com

137

7.1 Unit Testing and NUnit Framework

Unit testing is a common standard practice in testing software projects as it is

beneficial and applicable to all levels of programming languages (low level, middle level

and high level) [163]. Unit testing refers to testing the individual units of the computer

applications in order to make sure that system units are working as expected. When this

activity is required to be automated, as in the testing of complex systems, unit testing

frameworks are used. A unit testing framework, which is often a free open source

software, in general provides the tester with a collection of key classes and

functionalities, such as TestCase, to design, code and run unit tests [163]. TestCase class

is used to implement the conditions and variables by which the system under test is being

tested.

We have used the NUnit framework, which is a unit testing framework from the

family of XUnit frameworks (such as JUnit and PyUnit), designed specifically to write

and run unit tests for all .Net languages [164]. We created another project parallel to the

project containing the source code of the system in Visual Studio to build our test suite

for defining the test cases using NUnit framework. We generated a test suite containing a

total of 151 test cases for the system. These test cases were generated using black-box

testing method. By black-box testing here, we mean testing the functionality of the

individual software units (by units here we mean methods in particular) against the

requirements of the system, regardless of the source code. The expected values for the

test cases are defined based on the expected functionality o f the software features. It is

worth mentioning that in this section we present the testing procedure we undertook for

testing the software only, not the optimization module.

www.manaraa.com

138

As performing exhaustive testing to cover all the possible combinations o f input

domain values is not feasible in most software applications, several testing techniques are

devised to systematically reduce the number of test cases required to test a system. We

employed “category partitioning” method, in order to generate our test cases. In category

partitioning, the input domain for the method under test is divided into conceptually

independent partitions and then a test value will be selected from each partition to

generate a particular test case [161].

For example, assume that we want to test the getKMLPath method. This method

gets a string value representing the path for a XML file as its argument and returns a

string which is the path for the corresponding KML file. Instead of testing the method

with all the possible input string values, we can generate 2 test cases to compare the

method actual return values against the expected values defined by the method

specifications. In this particular situation, input strings can be divided into two separate

partitions; one the set of all the strings referring to a path where a XML file is saved and

another set where either the string is not a valid path or it is referring to location where no

XML file can be found. The expected return value for any nominal string taken from the

first set is a string referring to a valid path where the corresponding KML file is stored.

The expected return value for the nominal strings taken from the second set is a blank

(according to the method specification decided in the implementation phase). All the

other test cases are generated using the same method. A snapshot of the test cases

generated for getKMLPath method in Visual Studio is shown in Figure 36.

www.manaraa.com

139

After completion of the coding in each development iteration, we run the test suite

and the test case failures (if any) were investigated for the root cause of the failure in

order to remove the defects.

Ill <summary>
/ / / A te s t fo r getkm lPath
/ / /< /sum n ia ry>
[T e s tM e th o d ()]
p u b lic vo id getKM LPathTestNom inalR ightPathQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ;
s tr in g x m lp a th ll = @ "C :\U s e rs \R o s h a n a k \D ro p b o x \P ro je c t\P ip e lin e

O p tim iz e r \b in \R e le a s e \d a ta .x m l" ;
s tr in g expected = <3"h:\Program F i le s \M ic ro s o ft V is u a l S tu d io

1 0 .0\C om m on7\ID E \\Pem bin_Pipeline. kml“ ;
s tr in g a c tu a l;
a c tu a l = ta r g e t .g e tk m lP a th (x m lp a th ll) ;
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

}
III <summary>III A te s t fo r getkm lPath
/ / / < / summary?
[T e s tM e th o d ()]
p u b lic void getKMLPathTestNominalWrongPath()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r () ;
s tr in g x m lp a th ll = @"C:\Documents and S e ttin g s \r fa rh o o d \M y

D ocu m en ts \D rop b ox \P ro jec t\P ip e line O p tim ize r\b in \R e le a s e \d a ta l .xm l";
s tr in g expected =
s tr in g a c tu a l;
a c tu a l = ta rg e t .g e tk m lP a th (x m lp a th ll) ;
A ssert.A reE q ua l(exp ec ted , a c tu a l) ;

2 ;_____________________
Figure 36: Test cases generated for getkmlPath method

Table 23 summarizes the information related to the number of unit test cases

generated for each of the classes of our application. As shown in the table, we generated

93 test cases for the methods of mainController class (methods are described in Table

21), 4 test cases for the optimizerController class and a total of 54 test cases of the model

classes of the system. Breakdown of the number o f the test cases generated for

mainController class methods are tabulated in Table 24.

www.manaraa.com

140

System classes Class type # of unit test cases
Pump Model 40
PunipStation Model 10
Network Model 4
MainController Controller 93
GEController Controller 0
OptimizerController Controller 4
GEWindow View 0
FChart View 0
Total 151

Table 23: Overview of the system classes and the number of the generated unit test

cases using category partitioning approach

Method name # of test cases
createOptChart 9
createSpeedChart 9
createStChart 9
getkmlPath 2
getToLine 3
loadCombo 3
readNetworkData 28
setOptimizationPath 2
speedRoots 16
getOptimisationPath 2
getxmlPath 2
setxmlPath 2
getlmageC 2
setlmageC 2
getOptCost 2
Total 93

Table 24: Number of test cases generated for methods o: ' mainController class

The corresponding test run results, performed in Visual Studio is shown in Figure

37. As seen in the snapshot, all the 151 test cases passed and we had no test failures in

this specific test run. Sample test cases can be found in Appendix C.

www.manaraa.com

141

Test Results
ill * b \ *4* i Ro5han«k®ROSHANAK-PC2011- Run » Debug ~ it. *• 1 jT - hJ | Group $

ft Test run error Results: 151/151 passed’ Item(s) checked: 0

Result
Passed
Passed

j Passed
I Passed
; Passed

Passed
Passed
Passed

L ' Passed
Passed

17. <,As& Passed
<tiH& Passed

r Passed
□ Passed
L"; Passed
T ; Passed

i Passed
; Passed

Passed
: Passed
a. 1 ^ Passed

4 >

« { I M ,t

Figure 37: Snapshot taken in Visual Studio after running test methods of

mainController class, showing all 151 test cases were passed in this run

We did not generate test cases for the rest of the classes in the source code: We

did not perform unit testing on the category of view classes, as we used windows-based

standard .Net forms. We assume these .Net components are previously tested adequately

(before deploying .NET framework) and in order to test the functionality embedded in the

forms, we performed GUI testing. The methods used in GEController are the methods

taken from Google Earth API (referenced from EARTHLib.dll), for managing the user

interactions with Google Earth, such as zoon in, zoom out, drag, click to open the

information box of a certain object shown on the map and resizing. We assume these

methods were sufficiently tested by Google team while releasing Google Earth [165],

Test Nam e
createStChartTestNominalPath
createStChartTestNominalHeader
createStC hartTestNominalOpti
createStChartTestNominalScada
createStC ha rtTestHighBoundaryOpti
createStC hartT estLowBoundaryO pti
createStC hartTestHigHBoundaryScada
createStChartT estLowBoundaryScada
createStC hartTestNominalHour
getToLineTestNominalLine
getToLineTestFirstLine
getT olineT estW rongPath
Ed rt P a ra mT estRi ghtP ath
EditParamTestWrongPath
RunOptimisationRightPath
RunOptimisationW rongPath
speedRootsTestPPPPPP
speedRootsTestPPPNPP
speedRootsTestPPNPPP
speed RootsTestPPNNPP
SP«d R potsT«tP NP P PP

Project
PipeLineOptimizerT estProject
PipeLineOptimizerTestProject
PipeLineOptimizerT estProject
PipeLineOptimizerTestProject
PipeUneOptimizerT estProject
PipeLineOptimizerT estProject
PipeUneOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerTestProject
PipeLineOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerTestProject
PipeLineOptimizerTestProject
PipeLineOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerT estProject
PipeLineOptimizerTestProject
PiB*Lm«̂ ctimi2erX«tPfoiect

Error M essage

I! I <) L i >t | g C h i t p u t Test Results I

www.manaraa.com

142

7.1.1 Code Coverage

One of the measures used in software testing is code coverage and it shows how

adequately the source code is tested using the test suite. There exist different types of

code coverage criteria. In this work, we measured the coverage based on symbol

coverage and branch coverage criteria, as these two types of coverage were supported by

the tool we used for test coverage analysis.

Symbol coverage, similar to line coverage, measures how many sequence points

are covered by the test cases [166]. As we mentioned in Chapter 6, sequence points are

used to highlight a spot in the IL code that corresponds to a certain location (usually a

part of a statement) in the original code. Therefore, a statement can be broken down into

several sections each of which is referred to by a sequence point. Branch coverage

measures which decision outcomes in the source code are tested by the test suite.

The coverage was measured using NCover [166]. NCover is a .Net code coverage

tool by which the users can investigate the parts of the code that are not yet covered by

the test suite. The symbol and branch coverage scores calculated and reported by NCover

are shown in Figure 38. As seen in the figure, using our test suite, we got 95% symbol

and branch coverage for the mainController class and 100% symbol and branch coverage

for the methods of model classes.

www.manaraa.com

143

* - f GEW indow <65°/o) * - 3 G E W indow C62%)
i {> GEW indow (3 5 %) i < > G EW indow (3 0 %)

a { > GE W indow , con tro llers (8 7 %) a {> G E W indow .controllers (8 6 %)
i GECor,trailer (0%) i GEContrailer (0 %)

a •** m ainC ontroller (9 5 %) a m ainC ontroller (9 5 %)
«S> createO ptC hart (1 0 0 %) * createO p tC hart (1 0 0 %)
-it crea teS p eed C h a rt (9 5 %) ♦ crea teS p eed C h a rt (8 6 %)
♦ createStC hart (1 0 0 %) •* createStC hart (1 0 0 %)
<t> g e t lm a g e C (1 0 0 %) * g e t lm a g e C (1 0 0 %)
♦ getk m lP ath (1 0 0 %) <* getk m lP ath (1 0 0 %)
-it g etO p tC ost (1 0 0 %) « ge tO p tC o st (1 0 0 %)
% getO otim isation P ath (1 0 0 %) % getO p tim isa tion P ath (1 0 0 %)
♦ g e tS tea m R e a d er (1 0 0 %) ♦ g e tS tea m R e a d e r (1 0 0 %)
<» getT oL in e (1 0 0 %) •it getT oL ine (1 0 0 %)
* getxm lP ath (1 0 0 %) getxm lP ath (1 0 0 %)
<tt lo a d c o m b o (1 0 0 %) ♦ lo a d c o m b o (1 0 0 %)
<*> m ainC ontroller (1 0 0 %) ^ mairCorrtralier
-it readN etw orkO ata (1 0 0 %) read N etw orkD ata (100%)
<4> releaseO b ject (5 7 %) V reieaseO b ject
V se t lm a g e C (1 0 0 %) * s e t lm a g e C (1 0 0 %)
♦ setO ptim isationP ath (1 0 0 %) ♦ setO pttm isationP ath (1 0 0 %)

setxm lP ath (1 0 0 %) 9 setxm lP ath (1 0 0 %)
-it show C harts (0 %) ♦ show C harts (0 %)
-* s p e e d R oots (1 0 0 %) # s p e ed R o o ts (1 0 0 %)

a A* optiContnoller (8 0 %) a d fj opttC ontroller (1 0 0 %)
<# EditParam (1 0 0 %) <♦ EditParam
^ optiC ontroller optiC ontnoller (1 0 0 %)
-it RunO ptirnisatior (73%) # R unO ptlm lsatlon (1 0 0 %)

a { } G E W indow .m odel (1 0 0 %) a (} G E W indow .m odel (100%)
i J fj netw ork (1 0 0 %) i n e tw o rk (1 0 0 %)
i p u m p (1 0 0 %) i p u m p (1 0 0 %)
■ •* ; p u m pStation (1 0 0 %) i p u m p S tation (1 0 0 %)

Figure 38: Symbol and branch coverage values taken from NCover, the elements

which are not covered 100% by the test suite are color coded in red

A snapshot of the covered and uncovered code for releaseObject method in the

mainController class by the test cases is shown in Figure 39. The uncovered code is

highlighted in red.

7.1.2 SU T and Test Suite Dependencies

As software projects are always subject to being evolved or maintained, source

code change is inevitable. Test impact analysis [167] is performed to analyze the code

changes and to help the selection of those unit tests that are impacted by the source code

change, which means it brings traceability into the testing practice.

www.manaraa.com

144

Out test suite consists of several classes each of which includes the test cases for a

certain method. We have depicted the relationships among the system artefacts and the

test suite classes in a graph called Test Coverage Graph [168], as shown in Figure 40.

nuinControfci.es meteorites puroftu

s

17

s
s

U S

108

108

103

Figure 39: Snapshot of the covered and uncovered code in NCover for releaseObject

method in the mainController class

This mapping assisted us in performing our testing activity more efficiently, by

demonstrating the dependencies among test classes and corresponding methods, which

make the maintenance of the test suite more manageable, faster and easier whenever

source code changed by introducing the traceability concept to the testing practice.

fctesch iProseae p m Prctess.3et?roseasej3yKiseCe*::tl', | i

p .if ii l l i ;

surrentlnajepath » lasjepata;
retain isajeFath;

!
private vsld releeseCbjeet(object ok})
(

try

Systes.Raatiae. InteropServicea .HaraSal.HeleaseConObject lot; I;
obj « null;

catsbsfEsbeBtiittexl

m - g j i

i
finally

SC.Collect 0 ;

i
)

www.manaraa.com

145

readNetworkData

createSpeedCharfTest createOptChart

createSpeedChart

getKMLPathTeat createStChart

loadComboTest getSteamReader

readNetworkDataTest

loadCombo

getCombo

getOptlmlsatlonPathTest setQptimlzationPath

getXMLPathTest getOptimlzatlonPath

setXMLPathTest speedRoots

(gedmageCTeat

| aetlmageCTeat

(getOptCoatTeat

getOptlmlaattonPath

getXMLPath

aetXMLPath

getlmageC

getOptCost J J
Figure 40: Test Coverage Graph for the test methods of mainController

7.2 GUI Testing

GUI testing (Graphical User Interface) is the process of testing the system’s

graphical user interface to assure it functions as expected. As a result, in practice GUI

testing is often considered a major part of functional testing, which is testing of all

features and functions of the system to ensure the requirements and specifications are all

met [161, 169]. In general to generate adequate set of GUI test cases, all the functionality

of the system needs to be covered so that the test suite fully exercises all the possible

www.manaraa.com

146

events generated using the GUI [170, 171]. As our system consists of GUI components to

offer the system functionality to the operators, in this section we describe our practice of

testing the system GUI.

7.2.1 Event-Flow Graph

In order to simplify testing the system functionality through its GUI, we extracted

and investigated high level event-flow graph [169] of the system. GUI test cases are then

generated by traversing this graph in order to test the sequence of the events created by

the user while interacting with the system [169, 171]. The high level event-flow graph of

the system, depicted as the interaction overview diagram (a type of UML activity

diagram), is shown in Figure 41.

As seen in the figure, the operator can start working with the system by loading a

new pipeline to the system. This gives the operator the possibility of browsing pipeline

elements in Google Earth. Then the operator can open the optimization formulation file to

edit the target parameter(s) and then run the optimization solver. This often is followed

by viewing the optimal operation parameter values and comparing them with SCADA

data using comparative charts.

7.2.2 GUI Events and Widgets

GUI events are created when the user interact with the system using GUI

components [169]. These components are called widgets in this context, such as menus,

buttons, text boxes and combo boxes [171]. Different types o f possible events generated

in our system’s GUI are summarized in Table 25.

www.manaraa.com

147

Load pipaline *

[View charts]

[Browse]
[Load new]

Brows# pipaline
in Google Earth

Pdifl j [Call solver]

Edit
optimization

formulation file
[Exit!

Call
optimization

solver

[Call solver]

View
charts [Load new pipeline]

[Exit]/1[View charts]

Figure 41: Interaction overview diagram of the system

Event type Corresponding Widget Corresponding user action
Mouse left click Main menu When the user left clicks on the main menu to

select one of the menu options
Mouse left click Submenu When the user left clicks to select one of the sub

menu options
Mouse left click Button When the user clicks on a button
Text change Combo Box When the user changes the selected option of the

combo box
Selected change Radio button When the user changes the status of a radio button

from selected to unselected and vice versa
Table 25: System GUI events, their corresponding widget and user actions

www.manaraa.com

148

7.2.3 Event Sequences

In order to accomplish a target task in the system, as shown in the event-flow

graph, the user is required to pass through several steps while interacting with the system,

which results in the creation of a sequence of the events. These events are summarized in

Table 26.

Target Event sequences generated by the user
Load new
pipeline

Click main menu “File”, click “Load new pipeline”, clicks to choose
the target XML data file, click “Ok”

Browse the
pipeline

Zoom in, zoom out, drag, click on pump stations to open the
information window, click to close the. information window

Edit optimization
formulation file

Click main menu “Tools”, click “optimization”, click “Edit
parameters”, save file, close

Call the solver Click main menu “Tools”, click “optimization”, click “Run”
View charts Click main menu “Tools”, click “View optimization charts”, choose

chart type by clicking “chart type” radio button, choose station name by
clicking on the corresponding combo box, close “view charts” window

Close the
application

Click main menu “File”, click “Exit”

Table 26: Summary of the events generated by the user Interacting with the system

7.2.4 GUI Testing Tool

There exist several commercial tools for GUI testing, such as IBM rational

functional Tester by IBM [172] and Visual Studio 2010 Premium edition [173], each of

which offer a set of features to generate test cases and manage the testing activity for

large-scale GUI-based software applications. There also exist open source software such

as NUnitForms [174] which is an NUnit extension for unit and acceptance testing

of windows forms applications and GUITAR [175] which is usually used for Java-based

applications.

We used Ranorex Studio [176] to perform GUI testing, as this tool was easy to

setup and provided us with the required features to generate our test scripts. Ranorex

Studio supports test implementation and GUI script record and play back facility for the

www.manaraa.com

149

applications developed in C#. We employed “record/play back” [177] method. In this

method the test scripts are recorded using the recorder utility provided by the test tool and

then the scripts will be played back to check the correctness o f system functionality.

7.2.5 GUI test Cases (Test Scripts)

To generate GUI test scripts, the event-flow graph of the system was traversed

manually to extract possible paths, representing the scenarios when the user interacts with

the system. Using the breakdown of the events presented in Table 26, We recorded 23

GUI test scripts, primarily based on the event-interaction coverage criterion that requires

all the edges of the event-flow graph to be covered by at least one test case [178].

Additional to getting 100% event-interaction coverage score, we added some test scripts

to cover some common scenarios that an operator may go through while working with the

system. These scripts are listed in Table 27.

, OB . a v Add New Action - Turbo Mode (1.0~| x Speed |___ l] x Repeat jrfi* Screenshot j

Duration Action
1 0 m ? Run Application C:\Users\Roshan.

•: 1 r-'-S*** Mouse Click Left 2 2 ;1 1 MenuftemTools
K :-:3 m j* Mouse Click Left 2 0 : 1 S m ? MenuftemTools

* . 4 : * Mouse Click Left S 4 ;1 1 MenuftemView_Optimi
2 Mouse Click Left 5 6 :1 3 tes. MenuBarMenu

6 Validate Exists m FormCharts
« * 7 Mouse Click Left <;8 ® ButtonOpen

Mouse Click Left 1 5 1 :0 0 ListftemPrinceGeorge
■vJ? 9 Validate AltributeEqual Text 0 J3 TextNO
i * 1 0 Mouse Click Left 4 3 ; 1 2 ® ButtonClose
L * 1 1 Ml* Mouse Click Left 2 0 ; 1 2 jfc MenuttemFile

1 2 * 0 Mouse Click Left 5 1 :1 0 & MenultemExit

4 m

• >£& X v > > A d d N e w I t e m - l l t e i t l R e p o s r t o r v . n c r e p » P r o p e r t i e s V a r i a b l e s . . . ^ C l e a n u p

I t e mi+» FormPipelineOptimizcr f+i fig; CootextMenuGEWindow ft) iQJ FormChart*
I t! * * * L is tN lO Q O

P a t h

B a a e : / h r w (g c a n t r o l n a w e ■■'G E W in d o w *]
Bw e ; / c o n te x tm e n u { O p r o c e w n a m e » * G E W I r > d o w 'J
B a a e : / f b r m [# c o r r t r o i n a m e —’R lh a r t 'J
B a a e : / t s t [9 c o n t r o 6 d « * 1 0 0 0 ’)

Figure 42: Snapshot of test script taken from Ranorex Studio environment showing

different GUI actions included in the script

www.manaraa.com

150

A snapshot of a test script (script number 4 in Table 27) recorded in Ranorex

Studio testing environment is shown in Figure 42.

Test
Script #

Paths

1 Load pipeline-Close
2 Load pipeline-Load pipeline-Close
3 Load pipeline-Browse pipeline- Close
4 Load pipeline-Browse pipeline-View charts -Close
5 Load pipeline-View charts- Close
6 Load pipeline-Browse pipeline-Edit formulation file- Close
7 Load pipeline-Browse pipeline-Edit formulation file- Call solver- Close
8 Load pipeline-Browse pipeline-Edit formulation file- Call solver-View charts-

Close
9 Load pipeline-Browse pipeline-Edit formulation file-Call solver-View charts-

Load new pipeline- Close
10 Load pipeline-Browse pipeline-Edit formulation file-Call solver-View charts-

Load new pipeline- Browse pipeline- Close
11 Load pipeline-Run solver- Close
12 Load pipeline-Run solver-View charts- Close
13 Load pipeline- Edit formulation file-Run solver- Close
14 Load pipeline- Edit formulation file-Run solver-View charts- Close
15 Load pipeline-View charts- Edit formulation file-Run solver- Close
16 Load pipeline-View charts- Edit formulation file-Run solver-View charts- Close
17 Load pipeline-Run solver-View charts-Edit formulation file-Run solver- Close
18 Load pipeline-Run solver-View charts-Edit formulation file-Run solver-View

charts-Close
19 Load pipeline-Run solver-View charts-Edit formulation file-Run solver-View

charts- Edit formulation file-Run solver-View charts -Close
20 Load pipeline-Run solver-View charts- Edit formulation file-Run solver-View

charts- Edit formulation file-Run solver-View charts-Load new pipeline-Run
solver-View charts-Close

21 Load pipeline-Browse pipeline- Rim solver -Close
22 Load pipeline-Browse pipeline- View charts -Close
23 Load pipeline-Browse pipeline- Load new pipeline- Close

Table 27: Different paths used to record GUI scripts

As seen in the snapshot, the script recorded corresponds to a scenario where in the

application, user chooses to open “view optimization chart” window (line number 4 as

shown in the snapshot) and in that window “S3” station is selected and the value of total

optimization cost is validated (line number 9 as shown in the snapshot), the close button

www.manaraa.com

of “view optimization chart” window is clicked and then the user chooses to exit the

application. In the “play back” mode in Ranorex Studio, the recording can be played back

and the validations as well as the sequence of the events can be checked to assure the

correct system functionality. A snapshot showing the success of the playback

corresponding to above scenario is shown in Figure 43.

R eco rd in g l
Q S u c c e s s

E.Xtiw
2 3 /0 4 /2 0 1 1 10 :4 8 :3 7 PM ROSHANAKPC

W in dow s 7 3 2 b i t 1 3 6 6 x 7 8 8

en-US

F ilte r : j v j l n f c [Vj S u c c e s s

Time L evel Category M essage

00:02.279 Info Application Run application C :\U sers\R oshanak\D ropbox\Project\P ipeline
Optim izer\bin\R elease\G EW indow .exe with a rgum en ts

00:02 .475 Info M ouse M ouse Left Click item FormPipelineOptimizer.M enultemTools' a t 22; 11.

00:05 .046 Info M ouse M ouse Left Click item ‘FormPipelineOptimizer.M enuItemTools’ a t 20; 15.

00:09.061 Info Mouse M ouse Left Click item 'ContextM enuG EW indow .M enultem view _O ptim isation_Charts' a t 5

00:17 .743 Info M ouse M ouse Left Click item FormPipelineOptimizer.M enuBarM enu' a t 58:13.

00:18 .313 Info Validation Validating Exists on item 'Form C harts.Form Charts'.

00:18 .634 Success validation Elem ent for item 'Form C harts' d o e s exist.
00:19.471 Info M ouse M ouse Left Click item ‘Form C harts.B uttonO pen' a t 4 ;8 .

00:20 .433 Info Mouse M ouse Left Click item 'ListNlOOO.ListltemPrinceGeorge' a t 151:0.

01:01 .095 Info validation Validating A ttributeEqual C T ext-0 ') on item 'FormCharts.TextNO'.

01:01 .318 Success Validation Attribute 'Text' of e lem en t for item 'testlR epository.Form C harts.TextN O ' d o es m atch th e
specified value.

01:13 .461 Info Mouse M ouse Left Click item ‘Form Charts.ButtonClose’ a t 43 ; 12.

01:14 .309 Info Mouse M ouse Left Click item 'FormPipelineOptimizer.M enuItemFile' a t 20 :12 .

01:14 .961 Info M ouse M ouse Left Click item 'CcntextM enuGEW mdow.M enuItemExit' a t 51:10 .

Figure 43: Snapshot taken after playing back the test script shown in Figure 42,

showing the success of the validations included in the script

7.3 Mutation Testing on Optimization Formulation Script

Mutation testing is a testing technique which is conducted in order to assess the

test suite adequacy for detecting software defects and also to improve the code coverage

by the test cases [161]. During mutation testing, small syntactic changes, such as

www.manaraa.com

152

arithmetic or logical operator changes are made to the source code. As a result, a set of

similar faulty programs called mutants are created. Then we run the test suite on these

faulty versions, and if any test case fails while testing a mutant, the mutant is said to be

killed. If the existing test cases in a test suite can not kill the mutants, the test suite is not

adequate.

@FOR(Station (s) I s #EQ# 1;
0BIN(B_S11 (t))
@BIN(B_S12(t))
0BIN(Te_Sl(t))
H_Sl_Suc(t) = 1238000/ro/g ;
H_Sl_Disch(t) = H_Sl_Suc(t) + H_Sll(t) +
P_Sll(t) = P_Q_S11 * (Q_T(t) - Q_S11(t))
P_Icpt_s11 * B_S11(t) ;

P_Q_S12 * (Q_T(t) - Q_S12(t))
* B_S12(t) ;
B_S11 (t)
B_S11 (t)
B_S12 (t)
B_S12(t)
(1-B_S11(t)) * Q_min
(1-B Sll(t)) * Q Max

S12(t) ;
~P H Sll H Sll(t) +

P_S12(t) =
P_Icpt_S12
H_S11(t) <
H_S11(t)
H_S12 (t)
H_S12(t)
Q_S11(t)
Q_S11(t)
Q_S12(t)
Q_S12 (t)
C_S11(t)
P_L_S1(t)
P_L_S1 (t)
P_H_S1 (t)
P_H_S1 (t)
H_1000 (t)
+ ti) * 1_
H_1001(t) = H
+ b) * 1_1000
H_Sunset(t) = _
l_1001_Sunset ;
H_104 9(t) = H_Sunset(t)
(Q_T(t)+Q_SP(t)) + b) *
H_1051(t) = H_1049(t) +
(Q_T(t)+Q_SP(t)) + b) *
H_S3_Suc (t) = H_1051 (t)
b) * 1_1051_S3 ;
) ;

+ P H S12 * H S12 (t)

Max
min
_Max
min
’* Q
* Q

(1-B_S12(t)) * Q_min ;
(1-B_S12(t)) * Q_Max ;

= P_L_Sl(t) * Rate_L_Sl(t)
+ P_H_Sl(t) = P_Sll(t) + P_S12(t)
< P_Thresh_Sl * Te_Sl(t) ;
> P_Thresh_Sl * (l-Te_Sl(t)) ;
<= 100000 * (l-Te_Sl(t)) ;
= H_Sl_Disch(t) + (HS_S1
SI 1000 ;

+ P H SI (t) * Rate H Sl(t)

HS 1000) - V 1000(t)

1000(t)
~1001 ;
H 1001 (t)

+ (HS_1000 - HS_1001) - V_1001(t)

+ (HS 1001 - HS Sunset)

HS 1049)

(a * Q_T(t)

V 1049(t) -

- (a* Q_T(t)

(a * Q_T(t)

+ b) *

(a+ (HS_Sunset _ _
l_Sunset_1049 ;
(HS_1049 - HS_1051) - V_1051(t)
1_1°4 9_1051 ;
+ (HS 1051 - HS S3) - (a * (Q T(t)+Q SP(t))

(a

Figure 44: Sample part of the optimization formulation file [139]

www.manaraa.com

153

As we could achieve high code coverage with our test suite, as described in

section 7.1.1, we did not perform mutation testing on the application code. We applied

mutation testing on the optimization script, besides the sensitivity analysis done by

another member of our research group, in order to add more to the verification of the

optimization formulation file. The formulation file format is similar to scripting

languages, such as SQL. A piece of the optimization file is shown in Figure 44. Here in

order for a mutant to be killed, we consider two cases: (1) if the optimization solution is

not feasible, meaning that if the solver cannot find the global optimum, and (2) if the

optimal values achieved from running the faulty script differ from their values achieved

from running the original script.

In order to create mutants, we considered logical and arithmetic changes as well

as random variable name changes and statement deletion. The changes are applied

manually. The mutation testing is summarized in Table 28.

Mutation Operator Number of Mutants Description
Change < to > 27 All killed
Change > to < 32 All killed
Change + to - 20 All killed
Change * to / 20 All killed
Change <= to >= 5 All killed
Variable name change 20 All killed
Statement deletion
(randomly selected)

10 All killed

Table 28: Mutation testing summary

As seen in the table, we have 27 occurrence of “<” and 32 occurrence of “>”. We had

over 130 occurrences of + and * operators, from which we randomly choose 20 operators

to create faulty scripts. Also we performed a group of variable name changes, where the

name of a variable was replaced with another variable. Some cases of randomly statement

www.manaraa.com

154

deletions were also considered to create mutants. Then we run the optimization engine to

solve the faulty versions and we investigated the solver output to detect the changes in

achieved optimal values or any infeasible states. As seen in the table all o f our mutants

were killed, which means we either achieved different optimal values compared to

original optimal values after running faulty versions or the optimization solution was

infeasible. This can be related to the high sensitivity incorporated with the nature of the

pipeline problem formulation.

7.4 Discussion

According to the SLR performed as a part of this thesis, testing SES remains a

great challenge for the practitioners and the complexity of verification and validation of

SES is still an open issue. To elaborate our experience regarding the first research

question of the case study conducted, we had to deal with the validation of the scientific

part of the work (as called “scientific validation” by Hook and Kelly [75]) as well as the

correctness of the software developed to utilise that scientific core (referred to as “code

scrutinization” in [75]).

The first challenge is the result of not having certain oracles, as mentioned before,

and the experience of testing the “engineering core” of our system confirms that in

response to HI.3 (third hypothesis of the case study first research question), as no

“expected optimal solution” were available upfront, so that the “actual optimal solutions”

achieved from the developed optimization module could be tested against them.

To address the first challenge in response to H2.4 (forth hypothesis of the case

study second research question), as reported in the related section in [139], the sensitivity

analysis of the optimization formulation file was undertaken. Also the optimization

www.manaraa.com

155

problem was solved by another technique (i.e. genetic algorithm) so that the results of

two methods can then be compared. If two methods generate similar results, this can add

to the validity of the optimal results.

In order to address the second challenge, as described in this chapter, standard

testing activities such as unit testing and GUI testing were conducted on the system, in

order to assure correctness of the system’s functionality.

We also brought the best practices taken from the results of the SLR into action;

the study reported in [51] suggested having a test plan to go through the testing activity

more efficiently, we had our test plan to systematically develop the required testing

strategy as described in this chapter, which was integrated into our iterative development

practice. The iterative style of the development also leads into running the test cases often

as suggested in [88] to ensure the correctness of the system in each iteration.

Use of MVC architectural pattern as mentioned in Chapter 5 to introduce

testability was also beneficial, as it provides the possibility of testing the functionality of

the software independent from user interface. On the other side, further changes in the

interface, which may happen as the result of customizing the interface for new clients,

will not impact the core functionality of the system. This makes further testing and

maintenance easier.

7.5 Chapter Summary

In this chapter, the testing methods and practice undertook in order to detect

system bugs and assuring the system correct functionality was discussed.'We employed

black box unit testing, to test the methods of mainController class actual output against

their expected output based on the function specifications. As a result, the source code

www.manaraa.com

156

coverage was also reported. Also in order for testing the functionality of the system

through its GUI we used record and play back GUI testing method. We applied mutation

testing on the optimization formulation file, in order to fortify the sensitivity analysis

done by another member of our group. The summary of the lessons learned from testing

our system along with the lessons learned and best practices reported by other researchers

as applied to our case study, were presented.

Next Chapter will discuss several usage scenarios of the system. Some important

features and the commercialization of the system will also be discussed.

www.manaraa.com

♦

157

Chapter Eight: Operation and Usage

Software systems are typically developed to support the users in performing their

tasks more accurately and efficiently. Our pipeline operation system was primarily

planned to play a decision support system role in making important decision in the

pipeline operation.

In order to achieve this goal, we required to identify the scenarios for which the

system can potentially be beneficial. Following a Behavior-Driven development approach

[179], we first tried to understand in what situations the system is expected to be utilized

by our industrial partner, so that it can best serve their business needs. Then the focus of

the development, especially implementation of the features, will be on providing the

system with the features which are beneficial to the users in the identified usage

scenarios.

In Behaviour-Driven development, in order to identify the important scenarios of

the system usage, critical questions such as “What is the most important thing the system

should do?” or “Without using the system, where and what would be the biggest

impact?” are posed [179]. Investigating the answers tte such questions brings the insight

on the importance of the system and the identification of the situations where not having

the system may cause difficulties and challenges which can not be easily tackled.

As mentioned before, this system is developed with the objective of being used in

optimizing the pipeline operation. Through our meetings with our industrial partner, we

could identify every day concerns of the pipeline operators as well as the company

manager. These concerns mostly were related to the power consumption of the pump

www.manaraa.com

158

stations and the operational speed of the variable speed pumps. We could address these

concerns by designing and integrating the visualization of the power consumptions for

each pump station and the pipeline network as a whole, as well as calculating and

demonstrating the pump speeds within a 24 hour operation period. The details of a group

of real world scenarios in which these features were found beneficial to the company will

be presented in this Chapter.

In this Chapter, first we introduce the system’s main features, which make it a

decision support system by discussing several usage scenarios in Section 8.1. Other

+features of the system, such as visualizing the pump speed optimal values and loading a

new pipeline are then briefly presented in Section 8.2 and Section 8.3.

In the figures in this chapter, the values and the station names (vertical and

horizontal axis labels) were made hidden intentionally to respect the confidentiality of the

information belonging to our industrial partner.

8.1 Usage Scenarios

In this section we present three different situations where the use of the

optimization software is studied in order to help a pipeline operator in making decisions:

- Scenario 1: The impact of the delivery volume changes on the total power cost,

using the optimization charts,

- Scenario 2: The impact of replacing an existing pump with a new pump on the

total power cost,

- Scenario 3: The impact of changes in power rates and thresholds on the total

power cost.

www.manaraa.com

159

These scenarios are designed to show that the developed application can be used

as an effective decision support system for the company operators or manager when

required to make important financial, practical and contractual decisions. This is done by

providing them with an effective visualization to demonstrate how changing different

factors may impact the total power cost.

In each of the scenarios described below, first the user should open the

optimization dialogue window, open the optimization file there, which consequently

opens the Lindo editing environment and changes the corresponding parameters in the

optimization file. Then Lindo the optimization file should be run once and based on the

new produced results the new optimization charts are generated and shown. The decision

can be made by comparing the resulting charts. All the charts shown below are snapshots

taken from the “charts” window of the application.

8.1.1 Scenario 1: The impact o f the delivery volume changes on the total power cost,
using the optimization charts

In this scenario, the delivery volume contract is changed and the impact of the

changes is studied on the total power cost of the stations.

For example, let us assume the primary amount of volume contract is equal to

3,650 cubic meters based on the data taken from the company; the power consumption in

a period of working 24 hours in each station as well as the total amount of power

consumption is shown in Figure 45. The change in the power cost after decreasing the

volume to 3,000 cubic meters is shown in Figure 46.

www.manaraa.com

160

Chart Type

© Powor Coat O P^P Spaad

Station Naaie Total Opofatoin

Total Cost

eJ
8

II ■ Optimisation

■ SCAD A

SI S2 S3 S4 S5 T * l

Figure 45: Total cost, default case

Total Cost

£a
8 I I ■

M l

Optimisation

■ SCADA

9 8 8 St 8 M

Figure 46: Total cost after decreasing volume

www.manaraa.com

161

The change in power cost after increasing the volume to 3800 cubic meters is

shown in Figure 47.

As we have shown in the sample volumes above, the changes in volume will

result in proportional changes in power cost. It is worth noting here that there exists a

limited maximum allowable amount of volume in the pipeline under study which is

determined based on the length, diameter and other hydraulic characteristics of each

pipeline segment. If the volume amount is set to some values higher than this limit, no

optimal solution will be found. Please refer to [139] for more details.

8.1.2 Scenario 2: The impact o f replacing an existing pum p with a new pum p on the
total power cost

This comparison can be used in a situation where the user wants to investigate

whether it is a cost-effective decision to replace an old pump with a new one or not.

Total Cost

■ O ptim isation

■ SCADA

SI 8 S S 8 M

Figure 47: Total cost after increasing volume

www.manaraa.com

Uo
NB

r*

162

Station Hourly Cost

t
3
& ■ Optimisstiofl

• Sc»d»

~ m i t x • £ N # * or i x x i i i i i - X X X x x x x x x x x x x x x
Hours

Station Hourly Cost

x x x x x x x x x

■ OptimisatiorDn

■ Scsda

Hours

Figure 48: The impact of changing first pump in S4 station on power cost (top)

before, (bottom) after replacing the pump with a pump similar to S2 pump station

www.manaraa.com

163

£41&

Total Cost

SI SZ S3 U Ss T « l

Total Cost

I SC A D A

I O p t im is a t io n

eM
&

t i i
SI S2 S3 S4 S5 Tstal

■ SC A O A

■ O p t im is a t io n .

Figure 49: The impact of changing first pump in S4 station on other stations power

cost and total power cost (top) before, (bottom) after replacing the pump with a

pump similar to S2 pump station

As shown in Figure 48 and Figure 49, replacing the first pump in S4 station with

another pump similar to that of S2 station will result in an increase in total pipeline power

cost as well as an increase to power cost of SI and S2 stations while we notice a decrease

in the power cost of the S4 station itself. Interested reader can refer to [139] for more

information about the details of pump parameters and how they are calculated and being

used in the optimization objective function.

www.manaraa.com

164

8.1.3 Scenario 3: The impact o f changes in power rates and thresholds on the total
power cost

Sometimes changes in power rates or power rate thresholds may result in dramatic

changes in the total resulting power cost. By comparing the final effect of such changes

in different situations, the user can decide better about the rates while negotiating for a

new power contract. In the situation shown in Figure 50, the amount of power cost

increase after doubling power rates for SI station is demonstrated for different hours

during the day.

Station Hourly Cost

•Optimisation

r x x x x x x x x x r x x r x

Hour*

Station Hourly Cost

•Optimisation
• Scarfa

x x x x x x x x x x x x x x x
Hours

Figure 50: SI station power cost (top) with default power rates, (bottom) after

doubling power rates

www.manaraa.com

165

The impact of this increase on the total power cost is demonstrated in Figure 51.

As shown in the figure, the increase not only affect the total power cost of the S1 station,

but also it resulted in an increase in total power cost of the neighbour station, S2, which

resulted in the total power cost of the whole pipeline.

Total Cost

e a
a

I O ptim isation

ISCADA

81 82 S3 S4 S5 1M

Total Cost

e a
&

I O ptim isation

■ SCADA

82 S3 S4 85 T *l

Figure 51: Impact of total power cost (top) before, (bottom) after doubling

SI station power rates

www.manaraa.com

8.2 Speed Charts

As mentioned before, the pipeline operation optimization problem aims at finding

the optimal pipeline setting under which the pipeline is operated at minimum cost. After

this setting is found, the operator applies the proposed setting to the pipeline. This is

achieved mainly by either turning on/off a certain pump or running the variable speed

pumps with a target speed at certain hours.

As the optimization solver does not directly provide the optimal operation values

for pump speeds, another student of our research group, extracted the formula by which

the pump speed is calculated using the optimal values found for pump head, flow rate and

the coefficients of the pump. Employing that formula, our system finds the optimal speed

Chart Type

O Power Cost 0 Pump Speed

Station N«

Station Hourly Pump Speed

mm t t
i

■ Optimization

■ SCAOA

| Pom

Figure 52: Sample speed chart

www.manaraa.com

167

and provides the operator with the target operating pump speed in different hours

throughout the period optimization is performed. These values can be viewed in the

charts form, by selecting the chart type as “Pump Speed”. A snapshot of the optimal

speed values calculated for a pump station is shown in Figure 52. These values are shown

against the data taken from SCADA system.

8.3 Loading a New Pipeline

One of the features provided by our system is that the user can load different

pipelines to the system. As a result, all of the corresponding parameters and files are

updated and the new schematic pipeline can be browsed in Google Earth.

Besides the pipeline operated by our industrial partner, we designed a sample

pipeline in order for presenting the scenario of loading a new pipeline in the system. This

test pipeline includes 3 variable speed pumps as shown in Figure 53.

The system updates the corresponding parameters based on the values provided in

the XML file loaded to the system as mentioned before. Thus, in order to successfully

load a new pipeline, the corresponding XML file should contain all the required values.

These values include:

KML file path, containing the geographical profile of the pipeline

element, such as valves and stations,

Optimization formulation file path, containing optimization parameters,

such as the pipeline hydraulic characteristics and other operational

constraints,

SCADA data files path, if such data exists,

Pump coefficients for calculating speed, if the pump is variable speed.

www.manaraa.com

168

Figure 53: Pembina pipeline (top), hypothetical pipeline (bottom)

www.manaraa.com

169

8.4 Commercialization of the system

Optimizing pipeline operation is considered one of the important problems of the

pipeline operators, as it can significantly impact the amount of their profit. Similar to our

industrial partner, other pipeline operator companies can potentially be interested in

utilising a software system, which can help them optimize and improve their operational

routines. As the application is developed with the primary goal of providing the pipeline

operators with the optimized pipeline configuration, we were interested in

commercializing the software to have the opportunity of collaborating with more

industrial partners. This collaboration can also aid us to make the software a better fit for

the needs of the industry, by being presented to particular demands of different

companies.

This also can introduce new challenges in the deployment of engineering software

for the oil industry, which can be published in academia to be available for other

researchers in similar context.

With having these in mind, in May 2011 we started to commercialize the

application with the help of a business partner. The business partner is responsible to

identify potential industrial partners and build the ground for presenting the application.

The demo of the application was built and recently presented to several companies in

Calgary, who showed initial interest in collaboration. The follow up meetings with these

companies is being planned and after finalizing the details of the collaboration, the

software will be customized accordingly to meet their needs.

www.manaraa.com

8.5 Chapter Summary

In this chapter, the usage scenarios of the system were presented to provide some

insight on how the developed software can assist the operators and managers in making

the right decisions. The impact of pipeline parameters changes, such as delivery volume

and power rates, on the total operation cost were discussed. Besides the mentioned

parameters, other parameters of the pipeline formulation file can be altered as required

and the resulting impact can be visualised and studied using the charting utility integrated

to the system.

Speed charts, providing operational pump speed values to the user for operating

the pipeline with optimized configuration were presented. Loading a new pipeline, which

is another feature of the developed system, were also introduced in this chapter.

Next Chapter provides the summary, conclusions and future directions of this

www.manaraa.com

171

Chapter Nine: Summary, Conclusions and Future Works

This chapter summarizes and concludes the thesis. The summary of the thesis is
J

presented in Section 9.1, followed by the concluding remarks in Section 9.2 and

suggestions on the potential research trends in the future to follow up this work,

presented in Section 9.3.

9.1 Summary

This thesis included two major components. (1) The SLR on software engineering

for SES software development and, (2) the experiences in building an engineering

software in which the ideas inspired from the SLR were applied. The SLR aimed at

assessing the state of the art and practice in software engineering for SES development

and in particular identifies weaknesses and strengths, highlights challenges and finds

potential future research trends from the perspective of developers, researchers and

scientists. The case study aimed at developing an industrial pipeline operation

optimization software and decision support system.

In order to provide the ground for conducting this study, in Chapter 2, the

background on software engineering practices and previous publications in the field were

presented. Also, a group of common software systems from the oil industry family were

introduced.

In Chapter 3, we presented the steps taken to conduct the SLR and systematic

mapping on software engineering for SES development. SLRs were mentioned in the

literature to be one of the very common types of EBSE providing valuable information

for scientists and practitioners, which are methodical, comprehensive and organized

www.manaraa.com

172

reviews about the state of the art in a particular domain and about a certain subject.

Systematic mappings were also identified as a proper starting point for more detailed

studies as they categorize different types of primary studies and give summary of the

results.

A standard methodology for conducting systematic literature reviews was

employed using the well-known digital libraries in the field and the relevant information

from the publications based on a group of research questions were extracted and

integrated, forming the main part of the review protocol. The best practices reported in

literature were identified as applicable to various problem domains.

In Chapter 4, in the process of developing our industrial engineering software for

the optimization of oil pipeline operation, as a part a major ongoing research project, we

brought the insights taken from systematic literature review into practice. In the case

study we conducted, as a second goal, we aimed at testifying the challenges of SES

development and to verify the applicability of the best practices, investigate their

adaptability and validate the solutions reported, where relevant. This industrial

collaboration built the ground to enhance the quality and reliability of the end product

while optimized the cost and time issues by providing us with the highlights on the

potential bottlenecks and available solutions upfront.

The main goal of the case study was the development of the engineering software

and decision support system to provide the optimal operation scheduling for the operators

as well as the possibility to visually inspect the pipeline important variables such as total

power consumption, power cost for each of the stations and the pump speeds in variable

speed pump stations. In the beginning of the project, the domain terminology were

www.manaraa.com

173

identified to efficiently communicate with the domain experts and to understand the

pipeline system basics. This terminology includes the definition of pipeline elements such

as valves, pumps, and pump stations which are the main components of each pipeline

system. These elements were represented in the optimization formulation script by certain

variables (devised by another student in SoftQual research group). The optimization

objective, which is the minimization of the pipeline operation cost, was solved by the

commercial solver embedded in the application. Also as mentioned before as a second

goal by building this engineering software, we aimed at applying the ideas inspired by the

SLR.

In Chapter 5, the oil pipeline operation application requirements were presented

as well as the analysis and design documents used in designing the system. We adopted

object-oriented methodology for developing this system. System actors, use-case diagram

and activity diagrams such as calling the optimization solver, viewing charts and loading

a new pipeline were presented. MVC architectural pattern was adopted in order to

support testability and maintainability besides better managing different levels of the

application. Different elements of the system based on MVC architecture, which include

the system entities, controllers such as optimization controller and application views

which are different windows of the system were tabulated and described.

In Chapter 6, the iterative development process used to develop the system was

introduced. Dependency analysis, in order to extract the dependencies among the system

artefacts, was performed. This analysis identifies the highly dependent elements, whish

later gives the developer a precise idea about the element relationships, and is helpful

when any artefact of the application is required to be re-used, upgraded or replaced. Some

www.manaraa.com

174

of the application metrics such as lines of code, IL instructions and cyclomatic

complexity was calculated and reported followed by presenting selected dependency

graphs.

In Chapter 7, the testing practices undertook in order to detect system defects and

assuring the system correct functionality was discussed. Black box unit testing was

employed. The source code symbol and branch coverage values were also reported. In

order for testing the functionality of the system through its GUI, record and play back

GUI testing method was used. As the last section in that chapter, mutation testing was

applied on the optimization formulation script, in order to fortify the sensitivity analysis

done by another member of SoftQual research group.

In Chapter 8, the usage scenarios of the system were presented to provide insight

on how the developed software can assist the operators and managers in making the right

decisions. The impact of pipeline parameters changes, such as delivery volume and

power rates, on the total operation cost were discussed. Speed charts, providing

operational pump speed values to the pipeline operator for operating the pipeline with

optimized configuration were presented. Loading a new pipeline, which is another feature

of the developed system, was also introduced in that chapter.

9.2 Conclusions

Software systems are one of (if not) the most critical parts of any modem system

(e.g., scientific, engineering, health-care, and military). Traditionally, scientists and

engineers have used ad-hoc programming and software development techniques (e.g.,

code and debug) to develop their required software systems. However, with advances in

different areas of software engineering, more and more software engineering concepts,

www.manaraa.com

175

tools and methodologies are being adopted and used by scientists and engineers in their

software development tasks.

We aimed at providing a comprehensive background on identifying major issues

in software engineering for SES. By conducting a systematic literature review, we aimed

to systematically extracting available insights and inspirations from the literature and to

come up with a structured guideline on how to improve the whole development process

of SES.

By systematically reviewing and categorizing 83 selected papers in the area

published from 1980 to 2010, we were able to extract and report interesting information

about how SES is being developed in various domains. The demographic data presented

provide interesting insights about the research, researchers and domains of SES projects.

We found the trend of the publications to be increasing between 1980 and 2010.

This shows that this area in recent years is gaining more attentions. By extracting the

breakdown of research affiliates in this field, we found that not surprisingly the university

is the lead in publishing on SES development followed by research groups which conduct

collaborative works among the university and private sector. Other publications are

coming from research groups affiliated with the government. All o f these groups are

increasing their publications in the recent years.

Physics and biology are two domains from which we had most of the

publications, as these two disciplines require software for dealing with their complex

simulations and modeling.

www.manaraa.com

176

Most of the publications were focused on design, architecture, testing and

context-dependent methodologies and solutions to deal with the complexities and

challenges of developing SES.

By conducting the SLR we could characterize SES as a type of software which

has four main differences from commercial software. First, finalizing the requirements in

SES development is not practical and possible, as in most cases the goal of developing

the software is to find the solution to a problem for which no prior solution exists. Thus,

the requirement elicitation will remain an ongoing process throughout the life cycle of the

software. Actually developing working software quickly, is reported in the literature to be

a treatment for extracting the requirements more precisely at the later stages of the

development.

Second, as the main objective of developing SES is to provide a correct and

reliable code which can be utilized to improve the target science or engineering

discipline. As a result, the factor of building a working system in the shortest amount of

time outweighs adopting rigorous software engineering practices to ensure the quality of

end product. This is shown in the literature to be the main reason of ignoring most of the

beneficial practices in software engineering, such as considering testability, reusability

and maintainability in the design of SES.

Third, the developers of SES are mostly domain experts (i.e. scientists and

engineers). Not surprisingly, they are not academically trained to develop software

similar to software engineers. This makes adopting software engineering practices more

challenging for the domain experts.

www.manaraa.com

177

Finally, testing SES has two independent stages of verification and validation.

First stage is testing the scientific/engineering core for which usually no certain test

oracle exists. This in particular is a very context-dependent and challenging practice.

Second stage is testing the software that provides access to that scientific/engineering

core, and can be performed following the common testing practices.

The mentioned characteristics often introduce certain challenges in the

development of SES, which we aggregated besides the solutions provided, if any. These

challenges reported in the thesis also suggest the area of improvement and further

research for future projects in different context. The extent of the match between reality

of SES development and what is expected to be followed as suggested by the software

engineering methodologies show the current state of the art and gives a glimpse of what

is happening in practice.

We were able to identify best practices to give practical insights to the developers

who want to take the advantages of previous experiences and to adopt applicable

guidelines suggested by other developers in their own practice. Strengths and weaknesses

reported in the publications may pave the way for conducting a careful and precise

development practice. Upcoming trends in SES development propose the areas of

investments for further research and practice.

By developing industrial engineering software, we experienced the particular

challenges of this field and tried the practicality of the proposed solutions to improve the

development process besides enhancing the quality of the end product. We concluded

that developing SES is different from conventional software development in practices

mostly because its primary aim is to help the scientists and engineers better understand,

www.manaraa.com

178

analyze and resolve their domain issues and thus is highly tied with the knowledge and

expertise of scientists as the real owners of the software.

Our case study confirmed the observations reported by other practitioners in

different stages of the development, such as the difficulty of requirement elicitation and

the complexity of the testing. Although we aimed at developing software for pipeline

operation optimization, we had to deal with two segments in the system: the engineering

core responsible for finding the optimal operation settings and the software which was

developed to utilize the engineering core and provide the decision support facilities. We

could follow software engineering practices to facilitate the challenges of the interface

software, as shown in Table 29. However, certain challenges of designing, implementing

and testing the engineering core could not be resolved by following common software

engineering practices.

Challenge Solutions adopted for developing
the engineering core

Solutions adopted for developing the
software interface

Requirement
elicitation

Frequent meetings with domain
expert, to learn the domain
expertise and verify understanding
of the optimization problem

-Meetings with the domain experts to
understand how the software will be
utilized
-Adopting iterative development
approach

Design OO technology and MVC architectural
pattern

Implementation Using Lingo for implementing
MILP technique

Using Visual studio 2008 integration
environment and C# language for coding

Testing - Sensitivity analysis
- Solving the optimization problem
using genetic algorithm

- Unit testing
- GUI testing

Maintenance Dependency analysis
Table 29: Summarizing the solutions adopted for developing the engineering core

and solutions adopted for the software interface

www.manaraa.com

179

It is worth mentioning that the solutions summarized in the second column of the

table is reported based on the experience of another member of our research group, who

was in charge of developing the optimization module (i.e. engineering core).

To conclude we need to emphasize that without having proper understanding of

the domain and without tightly interacting and communicating with domain experts and

scientists, the scientific software development would not be a reliable and precise

practice. A lot of practical work has been done and evaluated by experts for improving

the practice of developing SES to ensure the reliability and robustness of the end product,

yet there exists certain challenges which need to be addressed.

9.3 Future Works

Using the results we have gained from the systematic literature review, we plan to

conduct surveys with practitioner SES developers to solicit the latest trends, challenges

and needs in those communities to and to identify more practical and empirical evidence

from other ongoing projects.

While searching to collect our primary studies, we found several insightful books

on the topic, that we did not include in this study. We plan to extend the scope of our

study by considering the related books at a later stage of this research.

Considering the reasonable trade-off between the required time and effort on one

side and the completeness of the results on the other side, we did not include in our

search keywords the domain names of scientific and engineering disciplines. Thus some

of the domain-specific publications may exist, which are not currently included in the

SLR. We plan to expand our search keywords to find and include such papers in the SLR

at a later stage.

www.manaraa.com

In the software application developed, we plan to integrate a database

management system, instead of using text files, in order to manage the historical data

taken from industry and the data generated by the optimization engine in a much more

efficient manner.

In order to improve the efficiency and to minimize the operation cost of oil

distribution systems, other features, such as batch-scheduling optimization and reduction

of pump maintenance costs can be added to the system based on the demand taken from

other potential industrial partners. Also in the optimization module, software engineering

aspects such as maintainability and readability can be improved.

As the system was developed as a sample of a SES in this study, the main focus

has been given to the proper design and correct functionality of the system by following

standard software engineering practices, thus the usability and user-friendliness of the

system through its GUI can be further enhanced and customized based on the ideas taken

from particular companies which will utilize the software in real practices.

www.manaraa.com

181

References

[1] "Software Horror Stories," in http://www.cs. tan. ac. il/~nachumd/horror.html. Last
accessed: July 2010.

[2] "Toyota's lesson: Software can be unsafe at any speed," in
http://bloss.computerworld.com/15547/tovotas lesson software can be unsafe
at any speed. Last accessed: July 2010.

[3] D. F. Kelly, "A Software Chasm: Software Engineering and Scientific
Computing," IEEE Software, vol. 24, no. 6, pp. 118-119,2007.

[4] G. Wilson, "Those who will not learn from history," Computing in Science and
Engineering, vol. 10, no. 3, pp. 5-6, 2008.

[5] G. V. Wilson, "Where's the real bottleneck in scientific computing?," American
Scientist, vol. 94, no. 1, pp. 5,2006.

[6] J. Segal, "Models of scientific software development," in Workshop on Software
Engineering in Computational Science and Engineering, 2008.

[7] J. F. Cremer, R. S. Palmer, and R. E. Zippel, "Creating scientific software,"
Transactions of the Society for Computer Simulation International, vol. 14, no. 1,
pp. 37-49, 1997.

[8] J. Segal, "Scientists and software engineers: A tale of two cultures," in
Psychology o f Programming Interest Group, 2008.

[9] B. Boehm, "Managing Software Productivity and Reuse," in Computer Physics
Communications, vol. 32, 1999.

[10] S. M. Easterbrook and T. C. Johns, "Engineering the Software for Understanding
Climate Change," Computing in Science and Engineering, vol. 11, no. 6, pp. 65-
74, 2009.

[11] "Reservoir Engineering Software and Services," in htto://www. fekete.com. Last
accessed: July 2010.

[12] "Energy Solution International," in httv://www.enersx’-solutions.com/. Last
accessed: July 2010.

[13] "Engineering Software Center," in http://www.enssoftwarecenter.com/. Last
accessed: July 2010.

[14] "Intuitive Software for Structural Engineering," in httv://www. iesweb.com/. Last
accessed: July 2010.

[15] "Workshop on Software Engineering in Health Care," in http://www-
swe. informatik.uni-heidelbers.de/sehc09/index.htm. Last accessed: July 2010.

[16] "International Workshop on Aerospace Software Engineering," in
htto://crisvs. cs. umn. edu/icse-workshop/Prosram. htm. Last accessed: July 2010.

[17] "International Workshop on Software Engineering for Computational Science and
Engineering," in http://www.cs.ua.edu/~SECSE 10. Last accessed: July 2010.

[18] "Workshop on Software Research and Climate Change " in
http://www. cs. toronto. edu/wsrcc/. Last accessed: July 2010.

[19] "Workshop on Software Engineering for Automotive Systems " in
http://www.inf.ethz.ch/personal/pretscha/events/seas07/. Last accessed: July
2010.

http://www.cs
http://bloss.computerworld.com/15547/tovotas
http://www.enssoftwarecenter.com/
http://www-
http://www.cs.ua.edu/~SECSE
http://www
http://www.inf.ethz.ch/personal/pretscha/events/seas07/

www.manaraa.com

182

[20] J. segal, "Some Problems of Professional End User Developers," in IEEE
Symposium on Visual Languages and Human-Centric Computing, 2007.

[21] B. Kitchenham and S. Charters, "Guidelines for Performing Systematic Literature
Reviews in Software engineering," in Evidence-Based Software Engineering,
2007.

[22] B. Kitchenham, P. Breretona, D. Budgenb, M. Tumera, J. Baileyb, and S.
Linkmana, "Systematic literature reviews in software engineering-A systematic
literature," Information and Software Technology, vol. 51, no. 1, pp. 7-15,2009.

[23] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, "Software Development
Environments for Scientific and Engineering Software: A Series of Case Studies,"
in International conference on Software Engineering, 2007, pp. 550-559.

[24] L. Hochstein and V. R. Basili, "The ASC-Alliance Projects: A Case Study of
Large-Scale Parallel Scientific Code Development," Computer, vol. 41, no. 3, pp.
50-58,2008.

[25] S. Smith, "Systematic Development of Requirements Documentation for General
Purpose Scientific Computing Software," in IEEE International Requirement
Engineering Conference, 2006.

[26] J. Tang, "Developing scientific computing software, current processes and future
directions," Master thesis, McMaster university, 2009.

[27] "The R Project for Statistical Computing," in httv://www.r-vroiect.ore/. Last
accessed: April 2011.

[28] "Gretl," in http://sretl.sourceforee.net/. Last accessed: July 2010.
[29] R. Kendall, J. C. Carver, D. Fisher, D. H. A. Mark, D. Post, C. E. R. Jr, and S.

Squires, "Development of a Weather Forecasting Code: A Case Study," IEEE
Software, vol. 25, no. 4, pp. 59-65, 2008.

[30] S. Kumar, K. Tamura, and M. Nei, "MEGA3: Integrated software for Molecular
Evolutionary Genetics Analysis and sequence alignment," Briefings in
Bioinformatics vol. 5, no. 2, pp. 150-163,2004.

[31] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B.
Ellis, L. Gautier, Y. Ge, J. Gentry, K. Homik, T. Hothom, W. Huber, S. Iacus, R.
Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G.
Smyth, L. Tiemey, J. Y. Yang, and J. Zhang, "Bioconductor: open software
development for computational biology and bioinformatics," Genome biology,
vol. 5, no. 10, pp. R80, 2004.

[32] J. C. Nelson, "QGENE: software for marker-based genomic analysis and
breeding," Molecular Breeding, vol. 3, no. 1, pp. 239-245, 1997.

[33] J. Segal and C. Morris, "Developing Scientific Software," IEEE Software, vol. 25,
no. 4, pp. 18-20, 2008.

[34] Basili, V. R. Carver, J. C. Cruzes, D. Hochstein, L. M. Hollingsworth, J. K. Shull,
F. Zelkowitz, and M.V, "Understanding the High-Performance-Computing
Community:A Software Engineer’s Perspective," IEEE Software, vol. 25, no. 4,
pp. 29-36, 2008.

[35] P. K. Chilana, C. L. P, and A. J. Ko, "Comparing Bioinformatics Software
Development by Computer Scientists and Biologists: An Exploratory Study," in

http://www.r-vroiect.ore/
http://sretl.sourceforee.net/

www.manaraa.com

183

Workshop on Software Engineering fo r Computational Science and Engineering,
2009.

[36] V. Maxville, "Preparing Scientists for Scalable Software Development," in
Workshop on Software Engineering for Computational Science and Engineering,
2009.

[37] Okoli C. and S. K., "A Guide to Conducting a Systematic Literature Review of
Information Systems Research," Working Papers on Information Systems, vol.
10, no. 26, pp. 2010.

[38] A. Fink, Conducting research literature reviews: from the Internet to paper. Sage
Publications Ltd., 2005.

[39] B. Kitchenham, P. Brereton, and D. Budgen, "The Educational Value of Mapping
Studies of Software Engineering Literature," in ACM/IEEE Conference on
Software Engineering, 2010.

[40] Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen, "Evidence-Based
Software Engineering," in International Conference on Software Engineering,
2004.

[41] D. S. Cruzes and T. Dyba, "Synthesizing evidence in software engineering
research," in ACM-IEEE Symposium on Empirical Software Engineering and
Measurement, 2010.

[42] S. E. Campbell, D. G. Seymour, and W. R. Primrose, "A systematic literature
review of factors affecting outcome in older medical patients admitted to
hospital," Age and Ageing, vol. 33, no. 1, pp. 110-115,2004.

[43] Pittaway, Luke, Robertson, Maxine, Munir, Kamal, Denyer, David, Neely, and A.
D, "Networking and Innovation: A Systematic Review of the Evidence,"
International Journal of Management Reviews, vol. 5, no. 3, pp. 137-168, 2004.

[44] T. Baines, H. Lightfoot, G. M. Williams, and R. Greenough, "State of the art in
lean design engineering: a literature review on white collar lean," Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, vol. 220, no. 9, pp. 1539-1547, 2006.

[45] S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-based Test-Case
Generation," in IEEE Transactions on Software Engineering, 2009.

[46] M. Harman, S. A. Mansouri, and Y. Zhang, "Search Based Software Engineering:
A Comprehensive Analysis and Review of Trends Techniques and Applications,"
in Department o f Computer Science King's College London, Technical Report
TR-09-03, 2009.

[47] E. Engstrdm, P. Runeson, and M. Skoglund, "A systematic review on regression
test selection techniques," Information and Software Technology, vol. 52, no. 1,
pp. 14-30, 2010.

[48] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic Mapping Studies
in Software engineering," in Conference on Evaluation and Assessment in
Software Engineering, 2008, pp. 71-80.

[49] D. Feitosa, K. R. Felizardo, L. B. R. d. Oliveira, D. Wolf, and E. Y. Nakagawa,
"Software Engineering in the Embedded Software and Mobile Robot Software

www.manaraa.com

184

Development: A Systematic Mapping," in International Conference on Software
Engineering and Knowledge Engineering, 2010.

[50] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson,
"How Do Scientists Develop and Use Scientific Software?," in Workshop on
Software Engineering for Computational Science and Engineering, 2009, pp. 1-8.

[51] C. Greenough and D. J. Worth, "Computational science and engineering
department software development best practice," in Technical report ral-tr-2008-
022, SFTC Rutherford AppletonLaboratory, 2008

[52] "SCHEDULE++ PIPELINE&PORT," in
http://www.oiVmdustrvschedulmQ.com/DiDeline port.html. Last accessed: April
2011

[53] "Planning, Scheduling and Blending Optimization Software," in
http://www. mStch. com/simto-products. htmL Last accessed: April 2011.

[54] "PEDI," in http://www.ssischedulinQ.com/. Last accessed: April 2011.
[55] "H/SCHED," in httpJ/www.haverly.com/OmniSuite.htm. Last accessed: April

2011.

[56] "High Performance SAP-Primavera Integration - Pipeline," in
www.DiDelinesofrware.com/Dsi/DiDelwe p3e.isp. last accessed: April 2011

[57] V. Garousi and T. Varma, "A Bibliometric Assessment of Canadian Software
Engineering Scholars and Institutions (1996-2006)," Canadian Journal on
Computer and Information Science, vol. 3, no. 2, pp. 19-29, 2010.

[58] Y. Jia and M. Harman, "An Analysis and Survey of the Development of Mutation
Testing," in IEEE Transactions on Software Engineering, 2010.

[59] R. L. Glass, "An assessment of systems and software engineering scholars and
institutions," Journal of Systems and Software, vol. 27, no. 1, pp. 63-67, 1994.

[60] G. Wilson, "Software carpentry " Computing in science and engineering, vol. 8,
no. 6, pp. 66-69, 2006.

[61] b. M. B. Blake, "A Student-Enacted Simulation Approach to Software
Engineering Education," IEEE Transactions on Education, vol. 46, no. pp. 124-
132, 2001.

[62] O. Bilhan, M. E. Emiroglu, and O. Kisi, "Application of two different neural
network techniques to lateral outflow over rectangular side weirs located on a
straight channel," Advances in Engineering Software, vol. 41, no. 6, pp. 831-837,
2010.

[63] K. L. Heninger, "Specifying Software Requirements for Complex Systems: New
Techniques and Their Application," IEEE Transactions on Software Engineering,
, vol. 6, no. 1, pp. 2-13, 1980.

[64] J. Segal, A. Grinyer, and H. Sharp, "The type of evidence produced by empirical
software engineers," in Workshop on Realising Evidence-based Software
Engineering, 2005.

[65] M. Rodgers, A. Sowden, M. Petticrew, L. Arai, H. Roberts, N. Britten, and J.
Popay, "Testing Methodological Guidance on the Conduct of Narrative Synthesis
in Systematic Reviews," Evaluation, vol. 15, no. 1, pp. 49-74, 2009.

http://www.oiVmdustrvschedulmQ.com/DiDeline
http://www
http://www.ssischedulinQ.com/
http://www.haverly.com/OmniSuite.htm
http://www.DiDelinesofrware.com/Dsi/DiDelwe

www.manaraa.com

185

[66] M. E. Larsson and P. A. Laplante, "On the Complexity of Design in Imaging
Software," in IEEE International Conference on Engineering o f Complex
Computer Systems, 2006, pp. 37 - 46.

[67] A. Spinelli, P. Salvaneschi, M. Cadei, and M. Rocca, "MI—an object oriented
environment for integration of scientific applications," in Conference on Object-
oriented programming systems, language and applications, 1994, pp. 212 - 222.

[68] S. Smith and W. Yu, "A document driven methodology for developing a high
quality Parallel Mesh Generation Toolbox," Advances in Engineering Software,
vol. 40, no. 11, pp. 1155-1167, 2009.

[69] S. F. Siegel and L. F. Rossi, "Analyzing BlobFlow: A Case Study Using Model
Checking to Verify Parallel Scientific Software," Recent advances in parallel
virtual machine and message passing interface, vol. 5205, no. 1, pp. 274-282,
2008.

[70] D. Kelly and R. Sanders, "Assessing the quality of scientific software," in
Workshop on Software Engineering for Computational Science & Engineering,
2008.

[71] J. R. Cary, S. G. Shasharina, J. C. Cummings, J. V. W. Reynders, and P. J.
Hinker, "Comparison of C++ and Fortran 90 for object-oriented scientific
programming," Computer Physics Communications, vol. 105, no. 1, pp. 20-36,
1997.

[72] T. L. Veldhuizen and M. E. Jemigan, "Will C++ be faster than Fortran?," in
Scientific Computing in Object-Oriented Parallel Environments, 1997, pp. 49-56.

[73] T. Veldhuizen, "Scientific Computing: C++ Versus Fortran," in
httt>://www. drdobbs. com/184410315, Last accessed: Aprill 2011.

[74] D. Kelly, D. Hook, and R. Sanders, "Five Recommended Practices for
Computational Scientists Who Write Software," Computing in Science and
Engineering, vol. 11, no. 5, pp. 48-53,2009.

[75] D. Hook and D. Kelly, "Testing for trustworthiness in scientific software," in
Workshop on Software Engineering fo r Computational Science and Engineering,
2009, pp. 59-64.

[76] D. Hook and D. Kelly, "Mutation Sensitivity Testing," IEEE Design & Test, vol.
11, no. 6, pp. 40-47,2009.

[77] R. Sanders and D. Kelly, "The Challenge of Testing Scientific Software," in
Conference for the Association for Software Testing, 2008.

[78] R. Sanders and D. Kelly, "Dealing with Risk in Scientific Software
Development," IEEE Software, vol. 25, no. 4, pp. 21-28,2008.

[79] J. Segal, "When Software Engineers Met Research Scientists: A Case Study,"
Empirical Software Engineering, vol. 10, no. 1, pp. 517-536, 2005.

[80] J. Segal, "Some challenges facing software engineers developing software for
scientists," in Workshop on Software Engineering fo r Computational Science and
Engineering, 2009.

[81] J. Segal, "Software Development Cultures and Cooperation Problems: A Field
Study of the Early Stages of Development of Software for a Scientific
Community," Computer Supported Cooperative Work, vol. 18, no. 5-6, pp. 581—
606,2009.

www.manaraa.com

186

[82] R. Kendall, D. Post, and J. I. c. S. D. L. I. C. S. Andrew Mark "Case Study of the
NENE Code Project," IEEE Design & Test vol. 12, no. 3, pp. 28-33, 2010.

[83] S. L. Eddins, "Automated Software Testing for Matlab," Computing in Science
and Engineering, vol. 11, no. 6, pp. 48-55, 2009.

[84] D. Hook, "Using code mutation to study code faults in scientific software,"
Master's thesis, Queen's University, 2009.

[85] K. Frounchi, L. C. Briand, L. Grady, Y. Labiche, and R. Subramanyan,
"Automating Image Segmentation Verification and Validation by Learning Test
Oracles," in Carleton University, Technical Report SCE-09-06, 2009.

[86] C. A. Crabtree, A. G. Koru, C. Seaman, and H. Erdogmus, "An Empirical
Characterization of Scientific Software Development Projects According to the
Boehm and Turner Model: a Progress Report," in Workshop on Software
Engineering for Computational Science and Engineering, 2009.

[87] R. A. Bartlett, "Integration strategies for Computational Science & Engineering
software," in Workshop on Software Engineering for Computational Science and
Engineering, 2009, pp. 35-42.

[88] M. A. Heroux and J. M. Willenbring, "Barely Sufficient Software Engineering: 10
Practices to Improve Your CSE Software," in Workshop on Software Engineering
for Computational Science and Engineering, 2009.

[89] C. Macaulay, D. Sloan, X. Jiang, P. Forbes, S. Loynton, J. R. Swedlow, and P.
Gregor, "Usability and User-Centered Design in Scientific Software
Development," IEEE Software, vol. 26, no. 1, pp. 96-102, 2009.

[90] D. D. Roure and C. Goble, "Software design for empowering scientists," IEEE
Computer Society, vol. 26, no. 1, pp. 88 - 95,2009.

[91] G. Fischer, K. Nakakoji, and Y. Ye, "Metadesign: Guidelines for Supporting
Domain Experts in Software Development," IEEE Software, vol. 26, no. 5, pp.
37-44, 2009.

[92] D. Woollard, C. Mattmann, and N. Medvidovic, "Injecting Software Architectural
Constraints into Legacy Scientific Applications," in Workshop on Software
Engineering for Computational Science and Engineering, 2009, pp. 65-71.

[93] R. Arora, P. Bangalore, and M. Memik, "Developing Scientific Applications
Using Generative Programming," in Workshop on Software Engineering for
Computational Science and Engineering, 2009, pp. 51-58.

[94] D. Woollard, N. Medvidovic, Y. Gil, and C. A. Mattmann, "Scientific Software as
Workflows: From Discovery to Distribution," IEEE Software, vol. 25, no. 4, pp.
37-43, 2008.

[95] K. S. Ackroyd, S. H. Kinder, G. R. Mant, M. C. Miller, C. A. Ramsdale, and P. C.
Stephenson, "Scientific Software Development at a Research Facility," IEEE
Software, vol. 25, no. 4, pp. 44-51,2008.

[96] M. Vigder, N. G. Vinson, J. Singer, D. Stewart, and K. Mews, "Supporting
Scientists’ Everyday Work: Automating Scientific Workflows," IEEE Software,
vol. 25, no. 4, pp. 52-58, 2008.

[97] S. A. Vilkomir, W. T. Swain, J. H. Poore, and K. T. Clamo, "Modeling Input
Space for Testing Scientific Computational Software: A Case Study," in
International conference on Computational Science, 2008, pp. 291 - 300.

www.manaraa.com

187

98] J. P. Kenny, C. L. Janssen, M. S. Gordon, M. Sosonkina, and T. L. Windus, "A
component approach to collaborative scientific software development: Tools and
techniques utilized by the Quantum Chemistry Science Application Partnership,"
Scientific Programming, vol. 16, no. 4, pp. 287-296, 2008.

99] B. A. Allan, B. Norris, W. R. Elwasif, and R. C. Armstrong, "Managing scientific
software complexity with Bocca and CCA," Scientific Programming vol. 16, no.
4, pp. 315-327, 2008.

100] J. C. Carver, "Post-Workshop Report for the Third International Workshop on
Software Engineering for High Performance Computing Applications," Sigsoft
Software Eng. Notes, vol. 32, no. 5, pp. 38-43, 2007.

101] R. P. Kendall, D. E. Post, J. C. Carver, D. B. Henderson, and D. A. Fisher, "A
Proposed Taxonomy for Software Development Risks for High-Performance
Computing (HPC) Scientific/Engineering Applications," Technical report
CMU/SEI-2006-TN-039, Carnegie Mellon 2007.

102] S. Smith, L. Lai, and R. Khedri, "Requirements Analysis for Engineering
Computation: A Systematic Approach for Improving Reliability," Reliable
Computing vol. 13, no. 1, pp. 83-107, 2007.

103] S. Baxter, S. W. Day, J. S. Fetrow, and S. J. Reisinger, "Scientific Software
Development Is Not an Oxymoron," PLoS Computational Biology, vol. 2, no. 9,
pp. 87, 2006.

104] D. W. Kane, M. M. Hohman, E. G. Cerami, M. W. Mccormick, K. F. Kuhlmman,
and J. A. Byrd, "Agile methods in biomedical software development: a multi-site
experience report," in Bioinformatics, 2006.

105] M. Broy, "Challenges in Automotive Software Engineering," in International
conference on Software engineering, 2006, pp. 33 - 42.

106] C. E. Rasmussen, M. J. Sottile, S. S. Shende, and A. D. Malony, "Bridging the
language gap in scientific computing: the Chasm approach," Concurrency and
computation: practice and experience, vol. 18, no. 1, pp. 151-162, 2006.

107] D. Kane, "Introducing Agile Development into Bioinformatics: An Experience
Report," in Proceedings o f the Conference on Agile Development, 2003, pp. 132-
MO.

108] W. A. Wood and W. L. Kleb, "Exploring XP for Scientific Research," IEEE
Software, vol. 20, no. 3, pp. 30-36, 2003.

109] E. Houstis, E. Gallopoulos, R. Bramley, and J. Rice, "Problem-Solving
Environments for Computational Science," IEEE Computational Science &
Engineering, vol. 4, no. 3, pp. 18 - 21,1997.

110] A. Dall’Osso, "Using computer algebra systems in the development of scientific
computer codes," Future Generation Computer Systems, vol. 19, no. 2, pp. 143-
160, 2003.

111] X. Jiao, M. T. Campbell, andM. T. Heath, "Roccom: an object-oriented, data-
centric software integration framework for multiphysics simulations," in
International conference on Supercomputing, 2003, pp. 358 - 368.

112] P. M. Johnson, "Second international workshop on software engineering for high
performance computing system applications," in Conference on Software
engineering, 2005, p. 683.

www.manaraa.com

188

[113] P. Johnson, "Workshop on software engineering for high performance computing
system (HPCS) applications," in Conference on Software Engineering, 2004, p.
772.

[114] F. M. Hovenden, S. D. Walker, H. C. Sharp, and M. Woodman, "Building quality
into scientific software," Software Quality Journal, vol. 5, no. 1, pp. 25-32, 1996.

[115] S. Smith and L. Lai, "A New Requirements Template for Scientific Computing,"
in Workshop o f Situational Requirements Engineering Processes, 2005.

[116] C. Blilie, "Patterns in Scientific Software: An Introduction," Computing in
Science and Engineering, vol. 4, no. 3, pp. 48-53, 2002.

[117] T. v. d. Wal, Knapen, Svensson, Athanasiadis, and Rizzoli, "Trade-offs in the
design of cross-disciplinary software systems," in International congress on
modeling and simulation; advances and applications fo r management and
decision making, 2005.

[118] H. Gardner, "Design Patterns in Scientific Software," in Computational Science
and Its Applications, 2004, pp. 776-785.

[119] T. Cickovski, T. Matthey, and J. u. A. Izaguirre, "Design Patterns for Generic
Object-Oriented Scientific Software," in International Conference on Software
Engineering, 2005.

[120] C. Letondal and U. Zdun, "Anticipating Scientific Software Evolution as a
Combined Technological and Design Approach," in International Workshop on
Unanticipated Software Evolution, 2003

[121] A. Gupta, N. Dubey, D. Naidu, P. Neethinathan, T. P. Srinivasan, B. G. Krishna,
R. Nandakumar, and P. K. Srivastava, "Designing Satellite Data Processing
Software Systems Using Object Oriented Technology," in Indian Cartographer,
2002, pp. 49-54.

[122] S. Z. Guyer and C. Lin, "Broadway: A Software Architecture for Scientific
Computing," in The Architecture o f Scientific Software, 2000, pp. 175-192.

[123] D. C. Arnold and J. J. Dongarra, "Developing an Architecture to Support the
Implementation and Development of Scientific Computing Applications," in
working conference on the architecture o f scientific software, 2000, pp. 39-55.

[124] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mclnnes, S. Parker,
and B. Smolinski, "Toward a Common Component Architecture for High-
Performance Scientific Computing," in IEEE International Symposium on High
Performance Distributed Computing, 1999, pp. 13-24.

[125] D. E. Bemholdt, W. R. Elwasif, and J. A. Kohl, "Communication Infrastructure in
High-Performance Component-Based Scientific Computing," in European
PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 2002, pp. 260 - 270.

[126] T. Epperly, S. R. Kohn, and G. Kumfert, "Component technology for high-
performance sceintific simulation software," in Working Conference on the
Architecture o f Scientific Software, 2000, pp. 69 - 86.

[127] D. E. Bemholdt, R. C. Armstrong, and B. A. Allan, "Managing complexity in
modem high end scientific computing through component-based software
engineering," in Workshop on Productivity and Performance in High-End
Computing, 2004.

www.manaraa.com

189

128] L. Hatton, "The T-Experiments: Errors in scientific software," IEEE
Computational Science & Engineering, vol. 4, no. 2, pp. 27-38, 1997.

129] D. E. Post and R. P. Kendall, "Software Project Management and Quality
Engineering Practices for Complex, Coupled Multiphysics, Massively Parallel
Computational Simulations: Lessons Learned From ASCI," International Journal
of High Performance Computing Applications, vol. 18, no. 4, pp. 399 - 416, 2004.

130] D. M. Beazley, "Automated scientific software scripting with SWIG," Future
Generation Computer Systems, vol. 19, no. 5, pp. 599-609,2003.

131] D. M. Beazley and P. S. Lomdahl, "Feeding a Large-scale Physics Application to
Python," in International Python Conference, 1997 pp. 21-28.

132] "Software Engineering of Energy-related Systems," in
http://www. ticalsarv. ca/~vsarousi/proiect-sw-enersv. html. Last accessed: July
2010 .

133] D. Stutz, T. Neward, and G. Shilling, Shared Source CLI Essentials'. O’Reilly,
2003.

134] E. Abbasi and V. Garousi, "An MILP-based Formulation for Minimizing
Pumping Energy Costs of Oil Pipelines: Beneficial to both the Environment and
Pipeline Companies," in press, Springer Journal on Energy Systems, 2010.

135] L. systems, "LINGO 12.0 " in Manual for Optimization Modeling Software for
Linear, Nonlinear, and Integer Programming, 2009.

136] D. E. Perry, "Lecture 11: Validity," in
http://users.ece.utexas.edu/~perrv/education/382c/handouts/LI 1.pdf. Last
accessed: April 2011.

137] "Pembina Pipeline Corporation," in http://www.pembina.com. Last accessed:
April 2011.

138] P. Runeson and M. Host, "Guidelines for conducting and reporting case study
research in software engineering," Empirical Software Engineering, vol. 14, no. 2,
pp. 131-164,2009.

139] E. Abbasi, "Development and industrial application of an MILP-based
optimisation algorithm fr minimizing pumping cost and carbon footprint of oil
pipelines," University of Calgary, Master's thesis, 2010.

140] C. B. Seaman, "Qualitative methods in empirical studies of software engineering,"
vol. 25, no. 4, pp. 557 - 572, 1999.

141] "Alaska pipeline," in http://www.solarstorms.ors/Spipeline.html. Last accessed:
April 2011.

142] "Enbridge Pipeline System," in
http://en. wikipedia. ors/wiki/Enbridse Pipeline System. Last accessed: April
2011 .

143] "Pump curve," in htfp://www.unicade.com/cmax/BuvPump.htm. Last accessed:
April 2011.

144] "Pump station," in http .//static, suim. co. uk/svs-
imases/Guardian/Pix/pictures/2007/04/12/Gazprom372.ips. Last accessed: April
2011 .

http://www
http://users.ece.utexas.edu/~perrv/education/382c/handouts/LI
http://www.pembina.com
http://www.solarstorms.ors/Spipeline.html
http://en
http://www.unicade.com/cmax/BuvPump.htm

www.manaraa.com

190

[145] "Oil pipeline control valves " in htto://mv.aoop.com/store/Photosenic-Asia—
Rovaltv-Free-Imases-32012582713601 OO/Oil-Pipeline-Control-Valves-bv-Shi-
Yali-gpps 559727812410191/. Last accessed: april 2011.

[146] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization:
Wiley-Interscience, 1999.

[147] "LINDO Systems - Optimization Software: Integer Programming, Linear
Programming, Nonlinear Programming, Stochastic Programming, Global
Optimization," in http://www. Undo, com/. Last accessed: April 2011.

[148] "KML,” in http://en.wikipedia.ors/wiki/Kevhole Markup Lansuase. Last
accessed: April 2011.

[149] "COM," in http://www. microsoft. com/com/default, mspx. Last accessed: April
2011.

[150] "MVC vs. MVP," in http://dotnetslackers.com/articles/desisnpatterns/Eversreen-
but-still-topical-MVC-vs-MVP.aspx. Last accessed:April 2011.

[151] "Class diagrams," in http://en. wikipedia. ors/wiki/Class diasram. Last accessed:
April 2011.

[152] "Iterative and incremental development," in
http://en.wikivedia.ors/wiki/Iterative and incremental development. Last
accessed: April 2011

[153] "Dependency analysis," in
htto'J/vubl ib. boulder, ibm. com/infocenter/sr/v6r0/index. isv ?topic=/com. ibm.sr. doc
/twsr mansrvce sovernanceusersuide05.html. Last accessed:April 2011.

[154] "NDepend," in http://www. ndepend. com/. Last accessed: April 2011.
[155] "Understanding and Using Assemblies and Namespaces in .NET," in

http://rn.sdn. microsoft. com/en-us/librarv/ms973231.asox. Last accessed: April
2011.

[156] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, 1976.

[157] "System Namespaces (.Net framework)," in htto://msdn.microsoft. com/en-
us/librarv. Last accessed: April 2011.

[158] "Building Testable ASP.NET MVC Applications," in htto://msdn.microsoft.com.
Last accessed: April 2011.

[159] "Microsoft Office XP primary interop assemblies (PIAs)," in
http://support.microsoft.com/kh/328912. Last accessed: April 2011

[160] "mscorelib," in http://dll.paretolosic.com/detail.php/mscorlib. Last accessed:
Aprill 2011.

[161] M. Aditya, Foundations o f Software Testing: Dorling Kindersley (India) Pvt. Ltd,
2008.

[162] S. Sanderson, ASP.NET MVC framework preview: Apress, 2010.
[163] P. Hamill, Unit test frameworks: O'Reilly Media Inc., 2005.
[164] "NUnit framework," in http://www.nunit.ors/. Last accessed: April 2011.
[165] "Testing Google Earth " in htto://earth. soosle.com/setest.html. Last

accessed: April 2011
[166] "NCover," in htto://www. ncover. com/. Last accessed: April 2011.

http://www
http://en.wikipedia.ors/wiki/Kevhole
http://www
http://dotnetslackers.com/articles/desisnpatterns/Eversreen-
http://en
http://en.wikivedia.ors/wiki/Iterative
http://www
http://rn.sdn
http://support.microsoft.com/kh/328912
http://dll.paretolosic.com/detail.php/mscorlib
http://www.nunit.ors/

www.manaraa.com

191

167] "Test Impact Analysis," in httvJ/msdn. microsoft. com/en-
us/librarv/dd286598. aspx. Last accessed: April 2011.

168] N. Koochakzadeh and V. Garousi, "TeCReVis: A Tool for Test Coverage and
Test Redundancy Visualization," in International Conference on Testing:
Academic and Industrial Conference - Practice and Research Techniques, 2010.

169] A. M. Memon, "A Comprehensive Framework for Testing Graphical User
Interfaces," PhD thesis, University of Pittsburgh, 2001.

170] A. M. Memon, "GUI Testing: Pitfalls and Process," Computer, vol. 35, no. 8, pp.
87-88, 2002.

171] A. M. Memon, "Advances in GUI Testing," Advances in Computers, vol. 58, no.
l,pp. 149-201,2003.

172] "Rational Functional Tester," in htto://www-
01. ibm. com/software/awdtools/tester/functional/#. Last accessed: April 2011.

173] "Testing the User Interface with Automated UI Tests," in
http://msdn. microsoft. com/en-us/librarv/dd286726. aspx. Last accessed: April
2011.

174] "NUnitForms," in http://nunitforms.sourceforge.net/. Last Accessed: April 2011.
175] "GUITAR—a GUI Testing frAmewoRk," in http://guitar.sourceforge.net/. Last

accessed: April 2011.
176] "Ranorex Studio," in http://www.ranorex.com/products/ranorex-studio-test-

automation-environment.html. Last accessed: April 2011.
177] "GUI testing," in

http://en.wikipedia.org/wiki/Graphical user interface testingUcite note-eight-8.
Last accessed: April 2011.

178] A. M. Memon, M. L. Soffa, and M. E. Pollack, "Coverage Criteria for GUI
Testing," in Software Engineering conference heldjointly with ACMSIGSOFT
symposium on Foundations o f software engineering, 2001, pp. 256-267.

179] "Behaviour-Driven Development," in http://behaviour-driven.org. Last accessed:
April 2011.

http://msdn
http://nunitforms.sourceforge.net/
http://guitar.sourceforge.net/
http://www.ranorex.com/products/ranorex-studio-test-
http://en.wikipedia.org/wiki/Graphical
http://behaviour-driven.org

www.manaraa.com

192

Appendix A: Primary Studies and Their Type of Evidence

The table below shows the summary of the primary studies focus and the type of

evidences they presented.

Type of evidence Ref Context/domain Paper’s main focus
Expert view
without empirical

[3] General Identification of the gap between software
engineers and scientists

backup [5] General Identification of problematic issues in scientific
computing

[331 General Improving SS development
[1051 Automotive Developing software for automotive industry
[74] General Practices for computational scientists

[109] General Problem solving environments
[101] high performance

computing
Identifying different risks

[100] high performance
computing

SE for high performance computing

[113] high

[112] high performance
computing

[1031 Biology Suggesting best practices for SS development
[7] Physical system

modeling and
simulation

Issues of developing SS

Case study [88] general | Practices to improve CSE software
Field study [8] Collaboration

among software
engineers and
financial
mathematicians,
earth and
planetary scientists,
space scientists and
molecular biologist

Differences between scientists and software
engineers

[80] software engineers
developing software
for space
scientists and
biologists

Challenges of software engineers

[811 Biology Culture and cooperation problems in SS

www.manaraa.com

193

development
[20] Collaboration

among software
engineers and
financial
mathematicians,
earth and
planetary scientists,
space scientists and
molecular biologist

Issues faced by SS developers

Case study [23] high performance
computing

Identification of the steps and tools in
developing high-performance software

[68] Mathematics Proposing a methodology based on software
requirement specification

[89] Imaging software
development

Usability and user-centered design

[24] large-scale parallel
code development
running on high end
computing systems

Developing large scale parallel software

[102] Requirement
specification for
beam analysis
software
development

Investigating the fact that the reliability of
engineering computation can be significantly
improved by adopting software engineering
methodologies for requirements analysis and
specification

[66] Scientific imaging
software

Investigating the complexity of design

[79] Space scientific
software
development

Investigating the case where software engineers
developing software for research scientists,
using a traditional, staged, document-led
methodology

[97] Multiphysics
simulation

Modeling the input space for testing

[29] Developing weather
forcasting code

Investigate the code development challenges
and the tools used

Experience report [94] Parallel computation
over data sets

Proposing and characterizing workflow systems

[131] Large-scale physics
application

Using python in SS development

[95] developing control
and data acquisition
software for the
SRS’s (Synchrotron
Radiation Source)
experimental
stations

SS development experiences and practices

[96] Developing
scientific workflow

Automating scientific workflow

www.manaraa.com

194

management
software system for
collecting,
analyzing,
and managing data
produced by sensors
and other
instruments and for
creating subsequent
reports

[104] Biomedical software
development

Investigating adopting agile method

[107] Bioinformatics Introduction and adoption of agile method
[87] General Proposing different integration strategies for

computational science and engineering software
[129] Large scale multi­

physics
computational
simulations

Lessons learned from developing large scale
multi-physics computational simulations

[108] evaluating
the performance of a
numerical scheme to
solve a model
advection-dififiision
problem

Adopting XP practices

[31] Computational
biology and
bioinformatics

Details of developing software for
computational biology and bioinformatics

Case study and
survey

[34] High-Performance-
Computing

Characterizing high-performance computing
community

Survey [26] General Developing scientific and computing software
[77] A mixture of

engineering and
scientific disciplines

Identifying different types of risks in testing SS
development

[36] Computational
chemistry

Surveying on how and where to integrate SE
with computational science

t86] General Characterization of SS
[78] A mixture of

engineering and
scientific disciplines

Dealing with risk

[50] General Surveying how scientists develop and use SS
Exploratory
study, interviews

[35] Bioinformatics Investigating the differences of software
development by biologists and computer
scientists

Illustration of
ideas

[83] General Automated software testing for Matlab

Experiment [128] seismic data
processing

Investigating errors in SS

www.manaraa.com

195

Systematic
mapping

[49] Embedded Software
and Mobile Robot
Software
Development

Software engineering for embedded systems

Experiences and
interviews

[117] Developing a
framework which
can be used for
assessment of how
future alternative
agricultural and
environmental
polices affect
sustainable
development in
Europe

Investigation of the risks in a modeling
framework and how to address them

Comparison [72] General Comparing C++ and Fortran
[71] General Comparing C++ and Fortran features

Interview and
experience

[70] Different scientific
disciplines

Investigating quality assessment practices

Concept
implementation
and case study

[93] Image retrieval-
poison solver

Generative programming for SS developments

Review [511 General CSE best practices
Concept
implementation

[63] Flight software
development

Presenting new techniques for making
requirements specifications precise, concise,
unambiguous, and easy to check for
completeness and consistency

[98] Quantom chemistry
application
development

Component-based architecture in quantum
chemistry SC

[111] Multi-physics
simulation

Proposing a framework for multi-physics
simulations

[116] Dynamic-systems
simulation

Introduction on using patterns for SS

[119] Computational life
sciences

Presenting design patterns for SS and explaining
their benefits

[125] High-performance
scientific computing

Investigating the incorporation of message
passing systems into component-based systems

[25] General Presenting a methodology for development of
the requirements for general purpose scientific
computing software

[91] General Proposing a framework to involve the domain
experts in design

[118] Plasma physics The use of design patterns
[92] Dealing with legacy

scientific code
Integrating architectural constraints with legacy
SS

[122] Scientifc library
implementation

Proposing the use of a compiler to automatically
optimize software library implementations

www.manaraa.com

196

[123] General Proposing a new architecture for SC application
development

[124] High-performance
scientific computing

Proposing a standard to support interoperability
among high-performance scientific components

[67] Builidng scientifc
software models

Integrating scientific applications

[126] High-performance
scientific simulation

Developing SS component technology

[127] High end scientific
computing

Presenting the Common Component
Architecture for managing the complexity in
high-performance scientific computing

[110] Generating scietific
code

Using computer algebra systems to
automatically generate a computer program

[99] High-performance
scientific computing

Introducing a tool to perform rapid component
prototyping while maintaining robust software
engineering practices

[106] Langauge
interoperability

Proposing an approach to fill the language gap
in SS

[130] Large-scale
parallel molecular
dynamics
simulations

Automatic SS scripting

[75] General Testing SS
[76] General Proposing mutation sensitivity testing
[84] General Proposing the use of code mutation for testing

SS
[120] Biology Integrating a technological and design approach

to support SS evolution
[114] General Managing individualist programmer
[115] General Proposing a new template for requirement

specification
[121] Satellite data

processing software
Using OO technology for the design of satellite
data processing software

[85] Image segmentation
software

Automated verification and validation technique
for image segmentation

[90] Scientific workflow
management system
development

Proposing a scientific workflow management
system

Table 30: Primary studies main focus and their type of evidence

www.manaraa.com

197

Appendix B: Dependency Analysis

Type Metrics: Code Quality

Figure 54: Code Quality measures

www.manaraa.com

Figure
55: Code

M
em

bers and
Inheritance

Type Name J # Instance Methods? Nb Static Methods C Nb Properties ? # Fields? # Children Classes ? Depth Of Inheritance Tree ? Type Namespace ?

network 4 0 2 2 0 1 GEWindow.model
pump 1 0 4 4 1 1 GEWindow.model
GEWmdow 19 0 0 20 0 7 GEWindow
pumpStation 8 0 4 4 0 1 GEWindow model
varaibleSpeedPump 18 0 10 10 0 2 GEWindow.model
ImainController 7 0 0 0 - - GEWindowcontrollers
mainControfer 19 0 0 5 0 1 GEWindowcontrollers
optimizerController 3 0 0 0 0 1 GEWindowcontrollers
GEController 5 9 0 15 0 1 GEWMowcontrollers
fChart 18 0 0 13 0 7 GEWindow
Program 0 1 0 0 0 1 GEWindow
Settings 1 2 1 1 0 3 GEWindowProperties
Resources 1 3 2 2 0 1 GEWindow.Properties

Type Name Nb Instance Methods Nb Static Methods Nb Properties Nb Fields Nb Children Classes Depth Of Inheritance Tree Type Namespace

Types M
etrics: Code

M
em

bers and
Inheritance

www.manaraa.com

Treemap metric view

199

Figure 56: Treemap metric view

www.manaraa.com

200

Dependency Graphs

GEControlIer. .c tor()

! GEControlIer. .cctorf)

r.GEController.GEResize
(Form .Panel)

f GEControlIer .LoadGE 1
(String,Form,Panel)

r GEControlIer ''j
- .GGMo iim WHm I !

(MouseEvarttArgs)

ft

f O E C a n n U M ■QPWIIIIian !
'aecMMotmr mi nzE
Q E C o rtm fc .OgHf iw a w ^

' HWND N O TO m tO ST

GECarMUM- .HWMO S O rT O M ’

ftmOomrnim "’"'j

f tK C o M M * ,WM_OUIT^

^G C C ontro l* . ,s » n d M te « » « e O
i tm uz.utm u.intn j

f GECqnPolMr
iinoa.m oa.inOj.T.ua)

('GEConlnHI.. W M C O M U A W

ÔECarwlH ,i n
r CECoMIottar HWND rO*> "

! -MVP JMUUMeCHAMOSB
fQBCtmWifswrmonviKDow
{GEC«4itrol9r \ .SsfWMewFoMlntia 1

,ir«Ptr.fFiU2>tU3M̂ta2.>M3a,ut«M3J}
©̂EConifroHpr

GECerttpiter
JM11) iAgyno|WW

r GECentwdw

f B E C o M W M r . U o w W M m r ^ { 1 (taim r.lntat^ntaa !MxtXMMJlJtootmmn)
f'isecanuaimr .D m N nm N

(Mew)

I'QECemotvtlmPtrJntPtr)
CSWECwViot— MUPmmm' 1 (InOa.MU)

f --- N
' GEControlIer.CloseGE() '

Figure 57: Dependency graph, within GEControlIer

www.manaraa.com

201

I optimizerController
.RunOptimisation(String)

.EditParam(String)

/• \
' optimize (Controller,'

.eterfl

Figure 58: Dependency graph, within optimizerController

rSy$tem.W!ndow$.Fonns =

N̂UnitFormŝ f "N
! mscorlib 1

^TestProjectO
Ŝystem.DrawInĝ

(GEWindow
(nterop.EARTHLib''

Ŝystem.Xmh

System

Figure 59: Dependency graph among the application’s assemblies and the test

assembly

www.manaraa.com

202

Dependency Matrix

— O GEwndo*
J - ()* GEWindow
i j-G O conbolert

(f | itH 3& mainControiet
f t * '

I r Q GEWindow
Intcrop.EARTHLjb

_Appfcation
00 ctr-̂ Ĉhafi
I f . i f - * * .Workbook
g g f r ^ .W o r k s h e e i

g g f - ^ A p p fc a fo ti
B f | r ^ j AppfcatcnDdss

A>k

> AasTille
in m f~ *■! Chart

i . 2 . ChartObjcct
fi r - > ChatObjecfe

v ChartTitte

Range

• jj-’-o S teeU

f - * o Workbook
i |r ~ > Workbooks

f—o Worksheet
X ltosG fO p

>C haftT #»
■*r,3p XEaveAsAccessMocJe

j ^ J m s c a f o
- □ System

t r - 'J System. Drawing
Sy$tem.Windows.Fonns

♦ r J SjetertXml

Figure 60: Dependency matrix

www.manaraa.com

203

Code Visualisation

Figure 61: Code city “Top-down” perspective, top left: Controllers, top right:

Models, bottom left: Views, bottom right: properties

Figure 62: Code city “Isometric” perspective

www.manaraa.com

204

Appendix C: Test Cases

createOptChart method test cases

using GEW indow .controllers;
using M ic ro s o ft.V is u a lS tu d io .T e s tT o o ls .U n itT e s tin g ;
using System;
using GEWindow.model;
using Excel = M ic r o s o f t .O f f ic e .In te ro p .E x c e l;

namespace T e s tP ro je c tl
{

I I I <summary>
/ / / T h is is a te s t c lass fo r m a in C o n tro lle rT e s t and is in tended
/ / / t o conta in a l l m a in C o n tro lle rT e s t U n it Tests
/ / /< /sum m ary>
[T e s tC la s s ()]
p u b lic c lass c re a te O p tC h a r tT e s t
{

p r iv a te Tes tC on tex t te s tC o n te x tln s ta n c e ;

I I I <summary>
/ / /G e ts or sets the t e s t con tex t which provides
/ / / in fo r m a t io n about and fu n c t io n a l i t y f o r th e c u rre n t t e s t ru n .
/ / /< /sum m ary>
p ub lic T e s tC o n te x t TestC ontext
{

get
{

re tu rn te s tC o n te x tln s ta n c e ;
>
set
{

te s tC o n te x tln s ta n c e = v a lu e ;
>

}
I I I <summary>
/ / / A te s t fo r c re a teS tC h a rt
/ / /< /sum m ary>
[T e s tM e th o d ()]
p u b lic vo id createO ptC hartTestlm ageP athQ
{

m a in C o n t r o l le r ta r g e t = new m a in C o n tro lle rQ ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

in t iC ounter = 10; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
ne tw ork nt = new n e tw o r k () ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
t a r g e t . readNetw orkData(n t) ;
s tr in g expected = @ "h:\Program F i le s \M ic ro s o ft V is u a l S tu d io

10.0\Common7\IDE" + " \\im g l0 .b m p "; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
s tr in g a c tu a l;
a c tu a l = ta rg e t .c re a te O p tC h a r t(iC o u n te r , n t) ;
A s s e r t .A reE q ua l(exp ected , a c tu a l) ;
/ /A s s e r t . In c o n c lu s iv e (”V e r ify th e co rrec tness o f th is t e s t m eth o d .");

________ I__

www.manaraa.com

205

[TestM ethod()]
p u b lic void crea teO p tC hartT estN o m ina lH ead erl()
{

n ia in C o n tro lle r ta r g e t = new m a in C o n tro lle r () ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te v a lu e
network n t = new n e tw o rk (); / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
t a r g e t . readNetworkData(n t) ;
t a r g e t . c re a te O p tC h a rt(iC o u n te r, n t) ;

E x c e l.A p p lic a tio n xlApp;
Excel.Workbook xlWorkBook;
Excel.W orksheet xlW orkSheet;

xlApp = new E x c e l.A p p lic a t io n C la s s Q ;
xlWorkBook = xlApp.Workbooks.Open(§"h :\P rog ram F ile s \M ic r o s o f t V is u a l

S tudio 1 0 .0\Common7\IDE\" + ” im a g e E x c e l.x ls " , 0 , t r u e , 5 , " " , " " , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t n, f a ls e , f a ls e , 0 , t r u e ,
1, 6) ;

//xlW orkBook = xlApp.Workbooks.Open(@ "C:\Program F ile s \T e s tD riv e n .N E T
3 \" + " im a g e E x c e l.x ls " , 0 , t r u e , 5 , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t " , f a ls e , f a ls e , 0 , t r u e ,
1, 0);

xlWorkSheet = (E x c e l.W o rk s h e e t)x lW o rk B o o k .W o rk s h e e ts .g e t_ Ite m (l);

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t .C e lls [l,
7]) . V a lu e 2 .T o S tr in g () ;

s tr in g expected = " T o ta l C ost";
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

}

[TestM ethod()J
p u b lic void c rea teO p tC h artT es tN o m in a lO p ti()
{

m a in C o n tro lle r ta r g e t = new m a in C o n tro lle rQ ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
network n t = new n e tw o rk Q ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
t a r g e t . readNetw orkData(n t) ;
t a r g e t . c re a te O p tC h a rt(iC o u n te r, n t) ;

E x c e l.A p p lic a tio n xlApp;
Excel.Workbook xlWorkBook;
Excel.W orksheet xlW orkSheet;

xlApp = new E x c e l.A p p lic a t io n C la s s Q ;
xlWorkBook = xlApp.Workbooks.Open(@"h:\Program F ile s \M ic r o s o f t V is u a l

Studio 10.0\Com m on7\IDE\" + " im a g e E x c e l.x ls " , 0 , t r u e , 5 , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , “\ t " , f a ls e , f a ls e , 0 , t r u e ,
1, 0) ;

xlWorkSheet = (E xce l.W o rk s h e e t)x lW o rk B o o k .W o rk s h e e ts .g e t_ Ite m (l);

www.manaraa.com

206

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t.C e lls [2 ,
4]) .V a lu e 2 .T o S tr in g () ;

s tr in g expected = "0 " ;
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

>

[T e s tM e th o d ()]
p u b lic void createO ptC hartTestN om inalS cada()
{

m a in C o n t r o l le r t a r g e t = new m a i n C o n t r o l l e r () ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
ne tw ork nt = new n e tw o r k () ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

v a lu e
ta r g e t . readNetworkData(n t) ;
ta rg e t .c re a te O p tC h a r t(iC o u n te r , n t) ;

E x c e l.A p p l i c a t i o n xlApp;
E x c e l.Workbook xlWorkBook;
Excel.W orksheet xlW orkSheet;

xlApp = new E x c e l.A p p l i c a t i o n C l a s s Q ;
xlWorkBook = xlApp.Workbooks.Open(@"h:\Program F ile s \M ic ro s o ft V is u a l

S tudio 10.0\Comm on7\IDE\" + " im a g e E x c e l.x ls " , 0 , t r u e , 5 , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t " , f a ls e , f a ls e , 0 , t r u e ,
1, 0);

xlW orkSheet = (E x c e l.W orkshee tJx lW o rkB o ok .W o rksh ee ts .g e t_ Item (l);

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t.C e lls [3 ,
3]) .V a lu e 2 .T o S tr in g ();

s tr in g expected = "392";
A s s ert.A reE q u a l(exp ec ted , a c tu a l) ;

>

[T e s tM e th o d Q]
p u b lic void createO ptC hartTestLow B oundaryO pti()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

in t iC o un ter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
ne tw ork nt = new n e tw o r k Q ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
t a r g e t . readNetworkData(n t) ;
ta rg e t .c re a te O p tC h a rt(iC o u n te r , n t) ;

E x c e l.A p p l i c a t i o n xlApp;
Excel.Workbook xlWorkBook;
E x c e l.Worksheet xlW orkSheet;

xlApp = new E x c e l.A p p l i c a t i o n C l a s s Q ;
xlWorkBook = xlApp.Workbooks.Open(@ "h:\Program F ile s \M ic r o s o ft V is u a l

S tud io 10.0\Com m on7\IDE\" + “im a g e E x c e l.x ls ” , 0 , t r u e , 5 , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t " , f a ls e , f a ls e , 0 , t r u e ,
1 , 0)J

www.manaraa.com

207

xlWorkSheet = (E xce l.W o rk s h e e t)x lW o rk B o o k .W o rk s h e e ts .g e t_ Ite m (l);

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t.C e lls [2 ,
2]) .V a lu e 2 .T o S tr in g ();

s tr in g expected = “640“ ;
A ssert:.A reEqual(expected , a c tu a l) ;

}
[T e s tM e th o d Q]
p u b lic void createOptChartTestLowBoundaryScadaQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lu e

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
ne tw ork nt = new n e tw o r k Q ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
ta r g e t . readNetworkData(n t) ;
ta rg e t .c re a te O p tC h a rt(iC o u n te r , n t) ;

E x c e l.A p p lic a tio n xlApp;
Excel.Workbook xlWorkBook;
Excel.W orksheet xlW orkSheet;

xlApp = new E x c e l.A p p l i c a t i o n C l a s s Q ;
xlWorkBook = xlApp.W orkbooks.Open(@ "h:\Program F ile s N M ic ro s o ft V is u a l

S tud io 10.0\Coirnnon7\IDE\" + " im a g e E x c e l.x ls " , 0 , t r u e , 5 , “ " , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t " , f a ls e , f a ls e , 0 , t r u e ,
1 , 0);

xlWorkSheet = (E x c e l.W orkshee t)x lW o rk B o o k .W o rk s h e e ts .g e t_ Ite m (l);

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t.C e lls [3 ,
2]) .V a lu e 2 .T o S tr in g ();

s tr in g expected = ”415";
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

>

[T e s tM e th o d Q]
p u b lic void createO ptC hartTestH ighB oundaryO ptiQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
ne tw ork nt = new n e tw o r k Q ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
ta r g e t . readNetworkData(n t) ;
ta r g e t . c rea teO p tC h art(iC o u n te r , n t) ;

E x c e l.A p p l i c a t i o n xlApp;
E x c e l.Workbook xlWorkBook;
Excel.W orksheet xlW orkSheet;

xlApp = new E x c e l.A p p l i c a t i o n C l a s s Q ;
xlWorkBook = xlApp.W orkbooks.Open(@ "h:\Program F ile s \M ic ro s o ft V is u a l

S tud io 10.0\Com m on7\IDE\" + " im a g e E x c e l.x ls " , 0 , t r u e , 5 , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t " , f a ls e , f a ls e , 0 , t r u e .

www.manaraa.com

208

l , 0);

xlWorkSheet = (E x c e l.W orkshee tJx lW o rkB o o k .W o rksh ee ts .g e t_ Item (l);

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t.C e lls [2 ,
7]) . V a lu e 2 . T o S tr in g () ;

s tr in g expected = "1364 .87293“ ;
A s s e r t .A reE qual(expected , a c tu a l) ;

>

[T es tM e thodQ]
p u b lic void createO ptC hartTestH ighB oundaryScada()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an ap p ro p ria te va lu e

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te v a lu e
ne tw ork nt = new n e tw o r k Q ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
t a r g e t . readNetworkData(n t) ;
t a r g e t . c rea teO p tC h art(iC o u n te r , n t) ;

E x c e l.A p p l i c a t i o n xlApp;
E x c e l.Workbook xlWorkBook;
E x c e l.Worksheet xlW orkSheet;

xlApp = new E x c e l.A p p l i c a t i o n C l a s s Q ;
xlWorkBook = xlApp.W orkbooks.Open(@ "h:\Program F ile s N M ic ro s o ft V is u a l

Studio 10.0\Com m on7\IDE\“ + " im a g e E x c e l.x ls ” , 0 , t r u e , 5 , t r u e ,
M ic ro s o ft .O ff ic e .In te ro p .E x c e l.X lP la tfo rm .x lW in d o w s , " \ t " , f a ls e , f a ls e , 0 , t r u e ,
1, 0);

xlWorkSheet = (E x c e l.W o rksh e e t)x lW o rk B o o k .W o rk s h e e ts .g e t_ Ite m (l);

s tr in g a c tu a l = ((E x c e l.R a n g e)x lW o rk S h e e t.C e lls [3 ,
7]) .V a lu e 2 .T o S tr in g ();

s tr in g expected = "3033";
A s s e r t .A reE q ual(exp ected , a c t u a l) ;

}

[T e s tM e th o d Q]
p u b lic void crea te0p tC h artN im na lH ead er2 ()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an ap p ro p ria te va lu e

in t iC ounter = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
ne tw ork nt = new n e tw o r k Q ; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
t a r g e t . read N etw o rkD ata (n t);
ta rg e t .c re a te O p tC h a r t(iC o u n te r , n t) ;

E x c e l.A p p lic a tio n xlA pp;
E x c e l.Workbook xlWorkBook;
E x c e l.Worksheet xlW orkSheet;

xlApp = new E x c e l.A p p l i c a t i o n C l a s s Q ;
______________ xlWorkBook = xlApp.W orkbooks.Open(g“h:\Program F ile s N M ic ro s o ft V is u a l

www.manaraa.com

209

Studio 10 .0\Common7\IDE\" + "im ageExcel.x ls", 0 , t ru e , 5, t ru e ,
M icro so ft.O ffice .In tero p .E xce l.X lP la tfo rm .x lW in d o w s, " \ t " , fa ls e , fa ls e , 0 , tru e ,
1, e);

xlWorkSheet = (E x c e l.W orkshee t)xlW orkBook.W orksheets.get_Item (l);

s trin g actual = ((Excel.R ange)xlW orkSheet.C ells[2 ,
1]) .V a lu e2 .To S tring ();

s trin g expected = "O ptim ization";
A s s e r t . AreEqual(expected, a c tu a l);

}
>

J _

speedRoots method test cases

using GEWindow.controllers;
using M icroso ft.V isu a lS tu d io .T es tTo o ls .U n itTestin g ;
using System;
//u s in g NUnit.Framework;

namespace T es tP ro je c tl
{

I I I <summary>
I I I This is a te s t class fo r m ainControllerTest and is intended
/ / / t o contain a l l m ainControllerTest U nit Tests
/ / /< /su m m a ry>
[T e s tC la s s Q]
public class speedRootsTest
{

p rivate T e s tC o n te x t testC ontextlnstance;
I I I <summary>
I I I Gets or sets the te s t context which provides
/ / / in fo rm a tio n about and fu n c tio n a lity fo r the current te s t run.
/ / / < / summary)
public T e s tC o n te x t TestContext
{

get
{

return testC ontextlnstance;
>
set
{

testC ontextlnstance = value;
}

}
I I I <summary>
I I I A te s t fo r speedRoots
/ / / < / summary>
[T e s tM e th o d ()]
public void speedRootsTestPPPPPP()
{

______________m a in C o n t r o l le r ta rg e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to

www.manaraa.com

210

an ap p ro p ria te va lu e
double a = 4 5 .5 6 ; 11 TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 234; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 1; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 2 3 .7 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 450; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b, c , cons, H, Q);
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

[T e s tM e th o d Q]
p u b lic vo id speedRootsTestPPPNPP()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r () ; / / TODO: I n i t i a l i z e to
an ap p ro p ria te va lu e

double a = 4 5 .6 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 7 6 .5 6 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 5679 .9 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = -1 9 .9 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 467; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b , c , cons, H, Q);
A s s e r t . A reE qual(expected , a c tu a l) ;

}

[T e s tM e th o d Q]
p u b lic void speedRootsTestPPNPPPQ
{

m a in C o n t r o l le r ta r g e t = new m a in C o n t r o . l l e r () ; / / TODO: I n i t i a l i z e to
an ap p ro p ria te va lu e

double a = 56; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 6789; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = -7 8 .9 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 98; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 9 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b, c , cons, H, Q);
A s s ert.A reE q u a l(exp ec ted , a c tu a l) ;

}

I I I <summary>
/ / / A te s t fo r speedRoots
///< /sum m ary>
[T e s tM e th o d Q]
p u b lic vo id speedRootsTestPPNNPPQ
{

m ain C o n tro lle r ta r g e t = new m a in C o n tro lle rQ ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lu e
______________double a = 45; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e____________

www.manaraa.com

211

double b = 300000; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = -2 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = -9 .6 ; / / . TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H =50; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 4 5 .9 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b , c , cons, H, Q);
Ass e rt.A re E q u a l(e x p e c te d , a c tu a l) ;

/ / / <summary>
/ / / A t e s t fo r speedRoots
/ /7</summary>
[T e s tM e th o d Q]
p u b lic void speedRootsTestPNPPPP()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

double a = 45; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = -89989; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 8 .9 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 78; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 45; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 10; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 101111.23; / / TODO: I n i t i a l i z e to an a p p ro p ria te

value
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b, c , cons, H, Q);
A s s e r t .A reE qual(expected , a c tu a l) ;

/ / / <summary>
/ / / A t e s t fo r speedRoots
/ / /< /sum m ary>
[T e s tM e th o d Q]
p u b lic void speedRootsTestPNPNPPQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lue

double a = 0 .0 124 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = -0 .4 9 0 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 806 .5363 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = -0 .8 7 1 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 78; I I TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 8 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 .3 1 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = t a r g e t .s p e e d R o o ts (a , b , c , co n s , H, Q);
A s s e r t . A reE q u a l(ex p ec ted , a c t u a l) ;

}

I I I <summary>
/ / / A t e s t fo r speedRoots
/ / /< /su m m a ry>

_________ [T e s tM e th o d Q]__

www.manaraa.com

212

pu b lic vo id speedRootsTestPNNPPP()
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r () ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lu e

double a = 0 .6 1 2 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = -0 .4 9 0 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = -8 0 6 .5 3 6 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 0 .8 7 1 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 500; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 200; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b , c , cons, H, Q);
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

I I I <summary)
I I I A te s t fo r speedRoots
/ / /< /sum m ary>
[T e s tM e th o d ()]
p u b lic void speedRootsTestPNNNPPQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r () ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lu e

double a = 0 .0 1 2 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = -0 .4 9 0 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = -8 0 6 .5 3 6 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
double cons = -0 .8 7 1 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 80; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b , c , cons, H, Q);
A s s e r t .A reE qual(expected , a c tu a l) ;

>

I I I <summary>
/ / / A te s t fo r speedRoots
/ / /< /s u m m a ry >
[T e s tM e th o d ()]
p u b lic vo id speedRootsTestNPPPPPQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r () ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lu e

double a = -0 .0 1 2 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 0 .4 9 0 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 806 .5363 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 0 .8 7 1 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 0 .1 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 .3 6 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b , c , cons, H, Q);
A s s e r t .A reE q ual(exp ected , a c tu a l) ;

>

www.manaraa.com

213

I I I <summary>
/ / / A te s t fo r speedRoots
/ / /</summary>
[T e s tM eth o d ()]
p u b lic void speedRootsTestNPPNPP()
{

m ain C o n tro lle r ta r g e t = new m a in C o n tro lle r () ; / / TODO: I n i t i a l i z e to
an a p p ro p ria te va lu e

double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 0 .4 3 4 5 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 926 .9063 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = -5 .1 2 3 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 10; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
double expected = 0 .3 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b, c , cons, H, Q);
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

}
[TestM ethodQ]
pub lic void speedRootsTestNPNPPPQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r () ; / / TODO: I n i t i a l i z e to
an ap p ro p ria te va lue

double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 11110.4345; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = -9 2 6 .9 0 6 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 5 .1 2 3 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
double Q = 10; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
double expected = 0 ; / / TODO: I n i t i a l i z e t o an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b, c , cons, H, Q);
A ssert.A reE q ua l(exp ected , a c tu a l) ;

[T e s tM e th o d Q]
p ub lic void speedRootsTestNPNNPPQ
{

m a in C o n t r o l le r t a r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an ap p ro p ria te va lu e

double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = 0 .4 345 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = -926 .9063 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = -5 .1 2 3 4 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 80; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double a c tu a l;
a c tu a l = ta r g e t .sp e e d R o o ts (a , b , c , cons, H, Q);
A s s e r t .AreEqual(expected, a c tu a l) ;

}

[T e s tM e th o d Q]
________ p ub lic void speedRootsTestNNPPPPQ__

www.manaraa.com

214

{
m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to

an a p p ro p ria te va lue
double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double b = -0 .4 3 4 5 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double c = 926.9063; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = 5 .1 234 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 10; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 .3 2 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lue
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b, c , cons, H, Q);
A s s e r t .A reE qual(expected , a c tu a l) ;

[T e s tM e th o d ()]
public void speedRootsTestNNPNPPQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e to
an appropriate value

double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e t o an appropriate value
double b = -0 .4 3 4 5 ; / / TODO: I n i t i a l i z e t o an appropriate va lue
double c = 926.9063; / / TODO: I n i t i a l i z e t o an appropriate value
double cons = -5 .1 2 3 4 ; / / TODO: I n i t i a l i z e t o an ap p ropria te value
double H = 100; / / TODO: I n i t i a l i z e t o an appropriate value
double Q = 80; / / TODO: I n i t i a l i z e t o an appropriate va lue
double expected = 0 .3 8 ; / / TODO: I n i t i a l i z e t o an appropriate value
double a c tu a l;
a c tu a l = ta r g e t .sp e e d R o o ts (a , b, c , cons, H, Q);
A s s e r t .AreEqual(expected, a c t u a l) ;

}

[T e s tM e th o d Q]
public void speedRootsTestNNNPPPQ
{

m a in C o n t r o l le r ta r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e t o
an appropriate value

double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e t o an appropriate value
double b = -0 .4 3 4 5 ; / / TODO: I n i t i a l i z e t o an appropriate va lue
double c = -926 .9063 ; / / TODO: I n i t i a l i z e t o an appropria te value
double cons = 5 .1 2 3 4 ; / / TODO: I n i t i a l i z e t o an appropria te value
double H = 100; / / TODO: I n i t i a l i z e t o an appropriate va lue
double Q = 90; / / TODO: I n i t i a l i z e t o an appropriate va lue
double expected =0; / / TODO: I n i t i a l i z e t o an appropriate value
double a c tu a l;
a c tu a l = ta r g e t .sp e e d R o o ts (a , b, c , cons, H, Q);
A s s e r t .AreEqual(expected, a c t u a l) ;

}
[T e s tM e th o d Q]
public void speedRootsTestNNNNPPQ
{

m a in C o n t ro l le r t a r g e t = new m a i n C o n t r o l l e r Q ; / / TODO: I n i t i a l i z e t o
an appropriate va lue

double a = -0 .0 0 2 2 ; / / TODO: I n i t i a l i z e to an appropriate va lue
_____________ double b = -0 .4 3 4 5 ; / / TODO: I n i t i a l i z e t o an appropriate va lue______

www.manaraa.com

215

double c = -9 2 6 .9 0 6 3 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double cons = -5 .1 2 3 4 ; / / TODO: I n i t i a l i z e to an a p p ro p r ia te va lu e
double H = 100; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double Q = 80; / / TODO: I n i t i a l i z e to an a p p ro p ria te va lu e
double expected = 0 ; / / TODO: I n i t i a l i z e to an a p p ro p ria te v a lu e
double a c tu a l;
a c tu a l = ta rg e t.s p e e d R o o ts (a , b , c , cons, H, Q);
A ssert.A reE q u a l(exp ec ted , a c tu a l) ;

}
}

1___

